1
|
Muranova LK, Vostrikova VM, Shatov VM, Sluchanko NN, Gusev NB. Interaction of the C-terminal immunoglobulin-like domains (Ig 22-24) of filamin C with human small heat shock proteins. Biochimie 2024; 219:146-154. [PMID: 38016530 DOI: 10.1016/j.biochi.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Small heat shock proteins are the well-known regulators of the cytoskeleton integrity, yet their complexes with actin-binding proteins are underexplored. Filamin C, a dimeric 560 kDa protein, abundant in cardiac and skeletal muscles, crosslinks actin filaments and contributes to Z-disc formation and membrane-cytoskeleton attachment. Here, we analyzed the interaction of a human filamin C fragment containing immunoglobulin-like domains 22-24 (FLNC22-24) with five small heat shock proteins (HspB1, HspB5, HspB6, HspB7, HspB8) and their α-crystallin domains. On size-exclusion chromatography, only HspB7 or its α-crystallin domain formed complexes with FLNC22-24. Despite similar isoelectric points of the small heat shock proteins analyzed, only HspB7 and its α-crystallin domain interacted with FLNC22-24 on native gel electrophoresis. Crosslinking with glutaraldehyde confirmed the formation of complexes between HspB7 (or its α-crystallin domain) and the filamin С fragment, inhibiting intersubunit FLNC crosslinking. These data are consistent with the structure modeling using Alphafold. Thus, the C-terminal fragment (immunoglobulin-like domains 22-24) of filamin C contains the site for HspB7 (or its α-crystallin domain) interaction, which competes with FLNC22-24 dimerization and its probable interaction with different target proteins.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Varvara M Vostrikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
2
|
Gerlevik U, Saygı C, Cangül H, Kutlu A, Çaralan EF, Topçu Y, Özören N, Sezerman OU. Computational analysis of missense filamin-A variants, including the novel p.Arg484Gln variant of two brothers with periventricular nodular heterotopia. PLoS One 2022; 17:e0265400. [PMID: 35613087 PMCID: PMC9132340 DOI: 10.1371/journal.pone.0265400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Periventricular nodular heterotopia (PNH) is a cell migration disorder associated with mutations in Filamin-A (FLNA) gene on chromosome X. Majority of the individuals with PNH-associated FLNA mutations are female whereas liveborn males with FLNA mutations are very rare. Fetal viability of the males seems to depend on the severity of the variant. Splicing or severe truncations presumed loss of function of the protein product, lead to male lethality and only partial-loss-of-function variants are reported in surviving males. Those variants mostly manifest milder clinical phenotypes in females and thus avoid detection of the disease in females. Methods We describe a novel p.Arg484Gln variant in the FLNA gene by performing whole exome analysis on the index case, his one affected brother and his healthy non-consanguineous parents. The transmission of PNH from a clinically asymptomatic mother to two sons is reported in a fully penetrant classical X-linked dominant mode. The variant was verified via Sanger sequencing. Additionally, we investigated the impact of missense mutations reported in affected males on the FLNa protein structure, dynamics and interactions by performing molecular dynamics (MD) simulations to examine the disease etiology and possible compensative mechanisms allowing survival of the males. Results We observed that p.Arg484Gln disrupts the FLNa by altering its structural and dynamical properties including the flexibility of certain regions, interactions within the protein, and conformational landscape of FLNa. However, these impacts existed for only a part the MD trajectories and highly similar patterns observed in the other 12 mutations reported in the liveborn males validated this mechanism. Conclusion It is concluded that the variants seen in the liveborn males result in transient pathogenic effects, rather than persistent impairments. By this way, the protein could retain its function occasionally and results in the survival of the males besides causing the disease.
Collapse
Affiliation(s)
- Umut Gerlevik
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ceren Saygı
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hakan Cangül
- Center for Genetic Diagnosis, Istanbul Medipol University, Istanbul, Turkey
| | - Aslı Kutlu
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Bioinformatics & Genetics, Faculty of Engineering and Natural Science, İstinye University, İstanbul, Turkey
| | | | - Yasemin Topçu
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Özören
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Biostatistics and Medical Informatics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
3
|
Kim HJ, Ryu KJ, Kim M, Kim T, Kim SH, Han H, Kim H, Hong KS, Song CY, Choi Y, Hwangbo C, Kim KD, Yoo J. RhoGDI2-Mediated Rac1 Recruitment to Filamin A Enhances Rac1 Activity and Promotes Invasive Abilities of Gastric Cancer Cells. Cancers (Basel) 2022; 14:cancers14010255. [PMID: 35008419 PMCID: PMC8750349 DOI: 10.3390/cancers14010255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression by activating Rac1 in gastric cancer. However, the precise molecular mechanism by which RhoGDI2 activates Rac1 in gastric cancer cells remains unclear. In this study, we found that interaction between RhoGDI2 and Rac1 is a prerequisite for the recruitment of Rac1 to Filamin A. Moreover, we found that Filamin A acts as a scaffold protein that mediates Rac1 activation. Furthermore, we found that Trio, a Rac1-specific GEF, is critical for Rac1 activation in gastric cancer cells. Conclusively, RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for invasive ability of gastric cancer cells. Our findings suggest that RhoGDI2 might be a potential therapeutic target for reducing gastric cancer cell metastasis. Abstract Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Ki-Jun Ryu
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Taeyoung Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Seon-Hee Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Hyeontak Han
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Hyemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Keun-Seok Hong
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Chae Yeong Song
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Yeonga Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
| | - Cheol Hwangbo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.-J.K.); (K.-J.R.); (M.K.); (T.K.); (S.-H.K.); (H.H.); (H.K.); (K.-S.H.); (C.Y.S.); (Y.C.); (C.H.); (K.D.K.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1327
| |
Collapse
|
4
|
Filamin A: key actor in platelet biology. Blood 2020; 134:1279-1288. [PMID: 31471375 DOI: 10.1182/blood.2019000014] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Filamins (FLNs) are large dimeric actin-binding proteins that regulate actin cytoskeleton remodeling. In addition, FLNs serve as scaffolds for signaling proteins, such as tyrosine kinases, GTPases, or phosphatases, as well as for adhesive receptors, such as integrins. Thus, they connect adhesive receptors to signaling pathways and to cytoskeleton. There are 3 isoforms of FLN (filamin a [FLNa], FLNb, FLNc) that originate from 3 homologous genes. FLNa has been the recent focus of attention because its mutations are responsible for a wide spectrum of defects called filaminopathies A, affecting brain (peri-ventricular nodular heterotopia), heart (valve defect), skeleton, gastrointestinal tract, and, more recently, the megakaryocytic lineage. This review will focus on the physiological and pathological roles of FLNa in platelets. Indeed, FLNa mutations alter platelet production from their bone marrow precursors, the megakaryocytes, yielding giant platelets in reduced numbers (macrothrombocytopenia). In platelets per se, FLNa mutations may lead to impaired αIIbβ3 integrin activation or in contrast, increased αIIbβ3 activation, potentially enhancing the risk of thrombosis. Experimental work delineating the interaction of FLNa with its platelet partners, including αIIbβ3, the von Willebrand factor receptor GPIb-IX-V, the tyrosine kinase Syk, and the signaling pathway of the collagen receptor GPVI, will also be reviewed.
Collapse
|
5
|
Chiang TS, Wu HF, Lee FJS. ADP-ribosylation factor-like 4C binding to filamin-A modulates filopodium formation and cell migration. Mol Biol Cell 2017; 28:3013-3028. [PMID: 28855378 PMCID: PMC5662259 DOI: 10.1091/mbc.e17-01-0059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
Filamin-A plays a key role in tumorigenesis as well as the metastatic progression of prostate cancer, ovarian cancer, and gastric carcinoma. In this study, we identified filamin-A as a novel effector of Arl4C and showed that binding between Arl4C and FLNa modulates the formation of filopodia and cell migration by promoting activation of Cdc42. Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor–like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa–mediated activation of Cdc42.
Collapse
Affiliation(s)
- Tsai-Shin Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Hsu-Feng Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan .,Department of Medical Research, National Taiwan University Hospital, 100 Taipei, Taiwan
| |
Collapse
|
6
|
Seppälä J, Tossavainen H, Rodic N, Permi P, Pentikäinen U, Ylänne J. Flexible Structure of Peptide-Bound Filamin A Mechanosensor Domain Pair 20-21. PLoS One 2015; 10:e0136969. [PMID: 26322797 PMCID: PMC4554727 DOI: 10.1371/journal.pone.0136969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Filamins (FLNs) are large, multidomain actin cross-linking proteins with diverse functions. Besides regulating the actin cytoskeleton, they serve as important links between the extracellular matrix and the cytoskeleton by binding cell surface receptors, functioning as scaffolds for signaling proteins, and binding several other cytoskeletal proteins that regulate cell adhesion dynamics. Structurally, FLNs are formed of an amino terminal actin-binding domain followed by 24 immunoglobulin-like domains (IgFLNs). Recent studies have demonstrated that myosin-mediated contractile forces can reveal hidden protein binding sites in the domain pairs IgFLNa18–19 and 20–21, enabling FLNs to transduce mechanical signals in cells. The atomic structures of these mechanosensor domain pairs in the resting state are known, as well as the structures of individual IgFLN21 with ligand peptides. However, little experimental data is available on how interacting protein binding deforms the domain pair structures. Here, using small-angle x-ray scattering-based modelling, x-ray crystallography, and NMR, we show that the adaptor protein migfilin-derived peptide-bound structure of IgFLNa20–21 is flexible and adopts distinctive conformations depending on the presence or absence of the interacting peptide. The conformational changes reported here may be common for all peptides and may play a role in the mechanosensor function of the site.
Collapse
Affiliation(s)
- Jonne Seppälä
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nebojsa Rodic
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ulla Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Ylänne
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
7
|
van Kogelenberg M, Clark AR, Jenkins Z, Morgan T, Anandan A, Sawyer GM, Edwards M, Dudding T, Homfray T, Castle B, Tolmie J, Stewart F, Kivuva E, Pilz DT, Gabbett M, Sutherland-Smith AJ, Robertson SP. Diverse phenotypic consequences of mutations affecting the C-terminus of FLNA. J Mol Med (Berl) 2015; 93:773-82. [PMID: 25686753 DOI: 10.1007/s00109-015-1261-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/20/2015] [Accepted: 01/30/2015] [Indexed: 01/21/2023]
Abstract
UNLABELLED Filamin A, the filamentous protein encoded by the X-linked gene FLNA, cross-links cytoskeletal actin into three-dimensional networks, facilitating its role as a signalling scaffold and a mechanosensor of extrinsic shear forces. Central to these functions is the ability of FLNA to form V-shaped homodimers through its C-terminal located filamin repeat 24. Additionally, many proteins that interact with FLNA have a binding site that includes the C-terminus of the protein. Here, a cohort of patients with mutations affecting this region of the protein is studied, with particular emphasis on the phenotype of male hemizygotes. Seven unrelated families are reported, with five exhibiting a typical female presentation of periventricular heterotopia (PH), a neuronal migration disorder typically caused by loss-of-function mutations in FLNA. One male presents with widespread PH consistent with previous male phenotypes attributable to hypomorphic mutations in FLNA. In stark contrast, two brothers are described with a mild PH presentation, due to a missense mutation (p.Gly2593Glu) inserting a large negatively charged amino acid into the hydrophobic dimerisation interface of FLNA. Co-immunoprecipitation, in vitro cross-linking studies and gel filtration chromatography all demonstrated that homodimerisation of isolated FLNA repeat 24 is abolished by this p.Gly2593Glu substitution but that extended FLNA(Gly2593Glu) repeat 16-24 constructs exhibit dimerisation. These observations imply that other interactions apart from those mediated by the canonical repeat 24 dimerisation interface contribute to FLNA homodimerisation and that mutations affecting this region of the protein can have broad phenotypic effects. KEY MESSAGES • Mutations in the X-linked gene FLNA cause a spectrum of syndromes. • Genotype-phenotype correlations are emerging but still remain unclear. • C-term mutations can confer male lethality, survival or connective tissue defects. • Mutations leading to the latter affect filamin dimerisation. • This deficit is compensated for by remotely acting domains elsewhere in FLNA.
Collapse
Affiliation(s)
- Margriet van Kogelenberg
- Department of Paediatrics and Child Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Benian GM, Mayans O. Titin and obscurin: giants holding hands and discovery of a new Ig domain subset. J Mol Biol 2014; 427:707-714. [PMID: 25555989 DOI: 10.1016/j.jmb.2014.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Sethi R, Seppälä J, Tossavainen H, Ylilauri M, Ruskamo S, Pentikäinen OT, Pentikäinen U, Permi P, Ylänne J. A novel structural unit in the N-terminal region of filamins. J Biol Chem 2014; 289:8588-98. [PMID: 24469451 DOI: 10.1074/jbc.m113.537456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin-like (Ig) domains are a widely expanded superfamily that act as interaction motifs or as structural spacers in multidomain proteins. Vertebrate filamins (FLNs), which are multifunctional actin-binding proteins, consist of 24 Ig domains. We have recently discovered that in the C-terminal rod 2 region of FLN, Ig domains interact with each other forming functional domain pairs, where the interaction with signaling and transmembrane proteins is mechanically regulated by weak actomyosin contraction forces. Here, we investigated if there are similar inter-domain interactions around domain 4 in the N-terminal rod 1 region of FLN. Protein crystal structures revealed a new type of domain organization between domains 3, 4, and 5. In this module, domains 4 and 5 interact rather tightly, whereas domain 3 has a partially flexible interface with domain 4. NMR peptide titration experiments showed that within the three-domain module, domain 4 is capable for interaction with a peptide derived from platelet glycoprotein Ib. Crystal structures of FLN domains 4 and 5 in complex with the peptide revealed a typical β sheet augmentation interaction observed for many FLN ligands. Domain 5 was found to stabilize domain 4, and this could provide a mechanism for the regulation of domain 4 interactions.
Collapse
Affiliation(s)
- Ritika Sethi
- From the Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P. O. Box 35, Survontie 9, 40014 Jyväskylä
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended. Biochem J 2012; 446:261-9. [PMID: 22676060 DOI: 10.1042/bj20120361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Filamins are large proteins that cross-link actin filaments and connect to other cellular components. The C-terminal rod 2 region of FLNa (filamin A) mediates dimerization and interacts with several transmembrane receptors and intracellular signalling adaptors. SAXS (small-angle X-ray scattering) experiments were used to make a model of a six immunoglobulin-like domain fragment of the FLNa rod 2 (domains 16-21). This fragment had a surprising three-branched structural arrangement, where each branch was made of a tightly packed two-domain pair. Peptides derived from transmembrane receptors and intracellular signalling proteins induced a more open structure of the six domain fragment. Mutagenesis studies suggested that these changes are caused by peptides binding to the CD faces on domains 19 and 21 which displace the preceding domain A-strands (18 and 20 respectively), thus opening the individual domain pairs. A single particle cryo-EM map of a nine domain rod 2 fragment (domains 16-24), showed a relatively compact dimeric particle and confirmed the three-branched arrangement as well as the peptide-induced conformation changes. These findings reveal features of filamin structure that are important for its interactions and mechanical properties.
Collapse
|
11
|
Su W, Mruk DD, Lie PPY, Lui WY, Cheng CY. Filamin A is a regulator of blood-testis barrier assembly during postnatal development in the rat testis. Endocrinology 2012; 153:5023-35. [PMID: 22872576 PMCID: PMC3512009 DOI: 10.1210/en.2012-1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis. A delay in its assembly during postnatal development leads to meiotic arrest. Also, a disruption of the BTB by toxicants in adult rats leads to a failure in spermatogonial differentiation. However, the regulation of BTB assembly remains unknown. Herein, filamin A, an actin filament cross-linker that is known to maintain and regulate cytoskeleton structure and function in other epithelia, was shown to be highly expressed during the assembly of Sertoli cell BTB in vitro and postnatal development of BTB in vivo, perhaps being used to maintain the actin filament network at the BTB. A knockdown of filamin A by RNA interference was found to partially perturb the Sertoli cell tight junction (TJ) permeability barrier both in vitro and in vivo. Interestingly, this down-regulating effect on the TJ barrier function after the knockdown of filamin A was associated with a mis-localization of both TJ and basal ectoplasmic specialization proteins. Filamin A knockdown also induced a disorganization of the actin filament network in Sertoli cells in vitro and in vivo. Collectively, these findings illustrate that filamin A regulates BTB assembly by recruiting these proteins to the microenvironment in the seminiferous epithelium to serve as the building blocks. In short, filamin A participates in BTB assembly by regulating protein recruitment during postnatal development in the rat testis.
Collapse
Affiliation(s)
- Wenhui Su
- Population Council, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
12
|
Su W, Mruk DD, Cheng CY. Filamin A: A regulator of blood-testis barrier assembly during post-natal development. SPERMATOGENESIS 2012; 2:73-78. [PMID: 22670216 PMCID: PMC3364794 DOI: 10.4161/spmg.20223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filamins are a family of actin-binding proteins composed of filamin A, B and C. Besides of their ability to induce perpendicular branching of F-actin filaments via their actin binding domains near the N-terminus, filamins can regulate multiple cellular functions because of their unique ability to recruit more than 90 protein binding partners to their primary sequences which are having highly diversified cellular functions. However, this family of proteins has not been examined in the testis until recently. Herein, we highlight recent findings in the field regarding the role of these proteins in cell epithelia, and based on recent data in the testis regarding their role on spermatogenesis, this review provides the basis for future functional studies.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
- Department of Biochemistry and Molecular Biology; China Medical University; Shen Yang, China
| | - Dolores D. Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
| |
Collapse
|
13
|
Abstract
Recent findings have identified critical roles for the actin filament-crosslinking protein filamin A (FlnA) in platelets and megakaryocytes. This short review focuses on the structure of FlnA and its interaction with the Von Willebrand Factor receptor GPIb-IX-V complex and the fibrinogen receptor, the integrin αIIbβ3 in platelets.
Collapse
Affiliation(s)
- Hervé Falet
- Division of Translational Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Abstract
Filamins are essential, evolutionarily conserved, modular, multidomain, actin-binding proteins that organize the actin cytoskeleton and maintain extracellular matrix connections by anchoring actin filaments to transmembrane receptors. By cross-linking and anchoring actin filaments, filamins stabilize the plasma membrane, provide cellular cortical rigidity, and contribute to the mechanical stability of the plasma membrane and the cell cortex. In addition to binding actin, filamins interact with more than 90 other binding partners including intracellular signaling molecules, receptors, ion channels, transcription factors, and cytoskeletal and adhesion proteins. Thus, filamins scaffold a wide range of signaling pathways and are implicated in the regulation of a diverse array of cellular functions including motility, maintenance of cell shape, and differentiation. Here, we review emerging structural and functional evidence that filamins are mechanosensors and/or mechanotransducers playing essential roles in helping cells detect and respond to physical forces in their local environment.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
15
|
Page RC, Clark JG, Misra S. Structure of filamin A immunoglobulin-like repeat 10 from Homo sapiens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:871-6. [PMID: 21821884 PMCID: PMC3151117 DOI: 10.1107/s1744309111024249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022]
Abstract
Filamin A (FlnA) plays a critical role in cytoskeletal organization, cell motility and cellular signaling. FlnA utilizes different binding sites on a series of 24 immunoglobulin-like domains (Ig repeats) to interact with diverse cytosolic proteins and with cytoplasmic portions of membrane proteins. Mutations in a specific domain, Ig10 (FlnA-Ig10), are correlated with two severe forms of the otopalatodigital syndrome spectrum disorders Melnick-Needles syndrome and frontometaphyseal dysplasia. The crystal structure of FlnA-Ig10 determined at 2.44 Å resolution provides insight into the perturbations caused by these mutations.
Collapse
Affiliation(s)
- Richard C Page
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
16
|
Nakamura F, Stossel TP, Hartwig JH. The filamins: organizers of cell structure and function. Cell Adh Migr 2011; 5:160-9. [PMID: 21169733 DOI: 10.4161/cam.5.2.14401] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Filamin A (FLNa), the first non-muscle actin filament cross-linking protein, was identified in 1975. Thirty five years of FLNa research has revealed its structure in great detail, discovered its isoforms (FLNb and c), and identified over 90 binding partners including channels, receptors, intracellular signaling molecules, and even transcription factors. Due to this diversity, mutations in human FLN genes result in a wide range of anomalies with moderate to lethal consequences. This review focuses on the structure and functions of FLNa in cell migration and adhesion.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Translational Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|