1
|
Lipska AG, Seidman SR, Sieradzan AK, Giełdoń A, Liwo A, Scheraga HA. Molecular dynamics of protein A and a WW domain with a united-residue model including hydrodynamic interaction. J Chem Phys 2016; 144:184110. [PMID: 27179474 PMCID: PMC4866947 DOI: 10.1063/1.4948710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023] Open
Abstract
The folding of the N-terminal part of the B-domain of staphylococcal protein A (PDB ID: 1BDD, a 46-residue three-α-helix bundle) and the formin-binding protein 28 WW domain (PDB ID: 1E0L, a 37-residue three-stranded anti-parallel β protein) was studied by means of Langevin dynamics with the coarse-grained UNRES force field to assess the influence of hydrodynamic interactions on protein-folding pathways and kinetics. The unfolded, intermediate, and native-like structures were identified by cluster analysis, and multi-exponential functions were fitted to the time dependence of the fractions of native and intermediate structures, respectively, to determine bulk kinetics. It was found that introducing hydrodynamic interactions slows down both the formation of an intermediate state and the transition from the collapsed structures to the final native-like structures by creating multiple kinetic traps. Therefore, introducing hydrodynamic interactions considerably slows the folding, as opposed to the results obtained from earlier studies with the use of Gō-like models.
Collapse
Affiliation(s)
- Agnieszka G Lipska
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Steven R Seidman
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Adam K Sieradzan
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Artur Giełdoń
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| |
Collapse
|
2
|
Long range Trp-Trp interaction initiates the folding pathway of a pro-angiogenic β-hairpin peptide. Sci Rep 2015; 5:16651. [PMID: 26602442 PMCID: PMC4658480 DOI: 10.1038/srep16651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 01/06/2023] Open
Abstract
HPLW, a designed VEGF (Vascular Endothelium Growth Factor) receptor-binding peptide, assumes a well folded β-hairpin conformation in water and is able to induce angiogenesis in vivo. In this study, we investigated at atomic resolution the thermal folding/unfolding pathway of HPLW by means of an original multi-technique approach combining DSC, NMR, MD and mutagenesis analyses. In particular, careful NMR investigation of the single proton melting temperatures together with DSC analysis accurately delineate the peptide folding mechanism, which is corroborated by computational folding/unfolding simulations. The HPLW folding process consists of two main events, which are successive but do not superimpose. The first folding step initiates at 320 K upon the hydrophobic collapse of the Trp5 and Trp13 side-chains which stabilizes the concurrent β-turn formation, whose COi-HNi + 3 hydrogen bond (Asp10 → Arg7) appears particularly stable. At 316 K, once the β-turn is completely formed, the two β-strands pair, very likely starting by Trp5 and Trp13, which thus play a key role also in the final step of the β-hairpin folding. Overall, here we describe a multi-state hierarchical folding pathway of a highly structured β-hairpin, which can be classified as a broken-zipper mechanism.
Collapse
|
3
|
Thermodynamical Studies of an Example Peptide Containing Metaaminobenzoic Acid (MABA) that Promotes Bends in Proteins. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
A study of the influence of charged residues on β-hairpin formation by nuclear magnetic resonance and molecular dynamics. Protein J 2014; 33:525-35. [PMID: 25316116 PMCID: PMC4239826 DOI: 10.1007/s10930-014-9585-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chain reversals are often nucleation sites in protein folding. The β-hairpins of FBP28 WW domain and IgG are stable and have been proved to initiate the folding and are, therefore, suitable for studying the influence of charged residues on β-hairpin conformation. In this paper, we carried out NMR examination of the conformations in solution of two fragments from the FPB28 protein (PDB code: 1E0L) (N-terminal part) namely KTADGKT-NH2 (1E0L 12–18, D7) and YKTADGKTY-NH2 (1E0L 11–19, D9), one from the B3 domain of the protein G (PDB code: 1IGD), namely DDATKT-NH2 (1IGD 51–56) (Dag1), and three variants of Dag1 peptide: DVATKT-NH2 (Dag2), OVATKT-NH2 (Dag3) and KVATKT-NH2 (Dag4), respectively, in which the original charged residue were replaced with non-polar residues or modified charged residues. It was found that both the D7 and D9 peptides form a large fraction bent conformations. However, no hydrophobic contacts between the terminal Tyr residues of D9 occur, which suggests that the presence of a pair of like-charged residues stabilizes chain reversal. Conversely, only the Dag1 and Dag2 peptides exhibit some chain reversal; replacing the second aspartic-acid residue with a valine and the first one with a basic residue results in a nearly extended conformation. These results suggest that basic residues farther away in sequence can result in stabilization of chain reversal owing to screening of the non-polar core. Conversely, smaller distance in sequence prohibits this screening, while the presence oppositely-charged residues can stabilize a turn because of salt-bridge formation.
Collapse
|
5
|
Shao Q, Wang J, Shi J, Zhu W. The universality of β-hairpin misfolding indicated by molecular dynamics simulations. J Chem Phys 2013; 139:165103. [DOI: 10.1063/1.4826461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Krupa P, Sieradzan AK, Rackovsky S, Baranowski M, Ołldziej S, Scheraga HA, Liwo A, Czaplewski C. Improvement of the treatment of loop structures in the UNRES force field by inclusion of coupling between backbone- and side-chain-local conformational states. J Chem Theory Comput 2013; 9. [PMID: 24273465 DOI: 10.1021/ct4004977] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The UNited RESidue (UNRES) coarse-grained model of polypeptide chains, developed in our laboratory, enables us to carry out millisecond-scale molecular-dynamics simulations of large proteins effectively. It performs well in ab initio predictions of protein structure, as demonstrated in the last Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). However, the resolution of the simulated structure is too coarse, especially in loop regions, which results from insufficient specificity of the model of local interactions. To improve the representation of local interactions, in this work we introduced new side-chain-backbone correlation potentials, derived from a statistical analysis of loop regions of 4585 proteins. To obtain sufficient statistics, we reduced the set of amino-acid-residue types to five groups, derived in our earlier work on structurally optimized reduced alphabets, based on a statistical analysis of the properties of amino-acid structures. The new correlation potentials are expressed as one-dimensional Fourier series in the virtual-bond-dihedral angles involving side-chain centroids. The weight of these new terms was determined by a trial-and-error method, in which Multiplexed Replica Exchange Molecular Dynamics (MREMD) simulations were run on selected test proteins. The best average root-mean-square deviations (RMSDs) of the calculated structures from the experimental structures below the folding-transition temperatures were obtained with the weight of the new side-chain-backbone correlation potentials equal to 0.57. The resulting conformational ensembles were analyzed in detail by using the Weighted Histogram Analysis Method (WHAM) and Ward's minimum-variance clustering. This analysis showed that the RMSDs from the experimental structures dropped by 0.5 Å on average, compared to simulations without the new terms, and the deviation of individual residues in the loop region of the computed structures from their counterparts in the experimental structures (after optimum superposition of the calculated and experimental structure) decreased by up to 8 Å. Consequently, the new terms improve the representation of local structure.
Collapse
Affiliation(s)
- Paweł Krupa
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland.,Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, N.Y., 14853-1301, U.S.A
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland
| | - S Rackovsky
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, N.Y., 14853-1301, U.S.A.,Dept. of Pharmacology and Systems Therapeutics, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, U.S.A
| | - Maciej Baranowski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| | - Stanisław Ołldziej
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, N.Y., 14853-1301, U.S.A
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland
| |
Collapse
|
7
|
Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics. Int J Mol Sci 2013; 14:9893-905. [PMID: 23665897 PMCID: PMC3676820 DOI: 10.3390/ijms14059893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/09/2013] [Accepted: 04/24/2013] [Indexed: 01/30/2023] Open
Abstract
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.
Collapse
|
8
|
Tsai MY, Yuan JM, Teranishi Y, Lin SH. Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model. J Biol Phys 2012; 38:543-71. [PMID: 24615219 PMCID: PMC3473134 DOI: 10.1007/s10867-012-9271-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 05/07/2012] [Indexed: 10/28/2022] Open
Abstract
Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model's thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- National Chiao Tung University, 1001 Ta Hsuen Road, Hsinchu, Taiwan, Republic of China,
| | | | | | | |
Collapse
|
9
|
Hałabis A, Żmudzińska W, Liwo A, Ołdziej S. Conformational Dynamics of the Trp-Cage Miniprotein at Its Folding Temperature. J Phys Chem B 2012; 116:6898-907. [DOI: 10.1021/jp212630y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Hałabis
- Laboratory of Biopolymer Structure,
Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymer Structure,
Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952
Gdańsk, Poland
| | - Stanisław Ołdziej
- Laboratory of Biopolymer Structure,
Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| |
Collapse
|
10
|
Makowska J, Liwo A, Zmudzińska W, Lewandowska A, Chmurzyński L, Scheraga HA. Like-charged residues at the ends of oligoalanine sequences might induce a chain reversal. Biopolymers 2012; 97:240-9. [PMID: 22161955 PMCID: PMC3371584 DOI: 10.1002/bip.22013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/07/2022]
Abstract
We have examined the effect of like-charged residues on the conformation of an oligoalanine sequence. This was facilitated by circular dichroism (CD) and NMR spectroscopic and differential scanning calorimetric (DSC) measurements, and molecular dynamics calculations of the following three alanine-based peptides: Ac-K-(A)(5) -K-NH(2) (KAK5), Ac-K-(A)(4) -K-NH(2) (KAK4), Ac-K-(A)(3) -K-NH(2) (KAK3), where A and K denote alanine and lysine residues, respectively. Our earlier studies suggested that the presence of like-charged residues at the end of a short polypeptide chain composed of nonpolar residues can induce a chain reversal. For all three peptides, canonical molecular dynamics simulations with NMR-derived restraints demonstrate the presence of ensembles of structures with a tendency to form a chain reversal. The KAK3 peptide exhibits a bent shape with its ends close to each other, while KAK4 and KAK5 are more extended. In the KAK5 peptide, the lysine residues do not have any influence on each other and are very mobile. Nevertheless, the tendency to form a more or less pronounced chain reversal is observed and it seems to be stable in all three peptides. This chain reversal seems to be caused by screening of the nonpolar core from the solvent by the hydrated charged residues.
Collapse
Affiliation(s)
- Joanna Makowska
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Shao Q, Yang L, Gao YQ. Structure change of β-hairpin induced by turn optimization: An enhanced sampling molecular dynamics simulation study. J Chem Phys 2011; 135:235104. [DOI: 10.1063/1.3668288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Makowska J, Uber D, Chmurzyński L. Thermodynamics of the Protonation Equilibria of Two Fragments of N-Terminal β-Hairpin of FPB28 WW Domain. J Phys Chem B 2011; 116:653-9. [DOI: 10.1021/jp209844v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joanna Makowska
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Dorota Uber
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
| |
Collapse
|
13
|
Maisuradze GG, Liwo A, Ołdziej S, Scheraga HA. Evidence, from simulations, of a single state with residual native structure at the thermal denaturation midpoint of a small globular protein. J Am Chem Soc 2010; 132:9444-52. [PMID: 20568747 DOI: 10.1021/ja1031503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The folding of the B-domain of staphylococcal protein A has been studied by coarse-grained canonical and multiplexed replica-exchange molecular dynamics simulations with the UNRES force field in a broad range of temperatures (270 K < or = T < or = 350 K). In canonical simulations, the folding was found to occur either directly to the native state or through kinetic traps, mainly the topological mirror image of the native three-helix bundle. The latter folding scenario was observed more frequently at low temperatures. With increase of temperature, the frequency of the transitions between the folded and misfolded/unfolded states increased and the folded state became more diffuse with conformations exhibiting increased root-mean-square deviations from the experimental structure (from about 4 A at T = 300 K to 8.7 A at T = 325 K). An analysis of the equilibrium conformational ensemble determined from multiplexed replica exchange simulations at the folding-transition temperature (T(f) = 325 K) showed that the conformational ensemble at this temperature is a collection of conformations with residual secondary structures, which possess native or near-native clusters of nonpolar residues in place, and not a 50-50% mixture of fully folded and fully unfolded conformations. These findings contradict the quasi-chemical picture of two- or multistate protein folding, which assumes an equilibrium between the folded, unfolded, and intermediate states, with equilibrium shifting with temperature but with the native conformations remaining essentially unchanged. Our results also suggest that long-range hydrophobic contacts are the essential factor to keep the structure of a protein thermally stable.
Collapse
Affiliation(s)
- Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | |
Collapse
|
14
|
Lewandowska A, Ołdziej S, Liwo A, Scheraga HA. beta-hairpin-forming peptides; models of early stages of protein folding. Biophys Chem 2010; 151:1-9. [PMID: 20494507 DOI: 10.1016/j.bpc.2010.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/01/2010] [Accepted: 05/01/2010] [Indexed: 11/19/2022]
Abstract
Formation of beta-hairpins is considered the initial step of folding of many proteins and, consequently, peptides constituting the beta-hairpin sequence of proteins (the beta-hairpin-forming peptides) are considered as models of early stages of protein folding. In this article, we discuss the results of experimental studies (circular-dichroism, infrared and nuclear magnetic resonance spectroscopy, and differential scanning calorimetry) of the structure of beta-hairpin-forming peptides excised from the B1 domain of protein G, which are known to fold on their own. We demonstrate that local interactions at the turn sequence and hydrophobic interactions between nonpolar residues are the dominant structure-determining factors, while there is no convincing evidence that stable backbone hydrogen bonds are formed in these peptides in aqueous solution. Consequently, the most plausible mechanism for folding of the beta-hairpin sequence appears to be the broken-zipper mechanism consisting of the following three steps: (i) bending the chain at the turn sequence owing to favorable local interactions, (ii) formation of loose hydrophobic contacts between nonpolar residues, which occur close to the contacts in the native structure of the protein but not exactly in the same position and, finally, (iii) formation of backbone hydrogen bonds and locking the hydrophobic contacts in the native positions as a hydrophobic core develops, sufficient to dehydrate the backbone peptide groups. This mechanism provides sufficient uniqueness (contacts form between residues that become close together because the chain is bent at the turn position) and robustness (contacts need not occur at once in the native positions) for folding a beta-hairpin sequence.
Collapse
|
15
|
Lewandowska A, Ołdziej S, Liwo A, Scheraga HA. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions. Proteins 2010; 78:723-37. [PMID: 19847914 DOI: 10.1002/prot.22605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A 20-residue peptide, IG(42-61), derived from the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using circular dichroism, nuclear magnetic resonance (NMR) spectroscopy at various temperatures and by differential scanning calorimetry (DSC). Unlike other related peptides studied so far, this peptide displays two heat capacity peaks in DSC measurements (at a scanning rate of 1.5 deg/min at a peptide concentration of 0.07 mM), which suggests a three-state folding/unfolding process. The results from DSC and NMR measurements suggest the formation of a dynamic network of hydrophobic interactions stabilizing the structure, which resembles a beta-hairpin shape over a wide range of temperatures (283-313 K). Our results show that IG (42-61) possesses a well-organized three-dimensional structure stabilized by long-range hydrophobic interactions (Tyr50 ... Phe57 and Trp48 ... Val59) at T = 283 K and (Trp48 ... Val59) at 305 and 313 K. The mechanism of beta-hairpin folding and unfolding, as well as the influence of peptide length on its conformational properties, are also discussed.
Collapse
Affiliation(s)
- Agnieszka Lewandowska
- Laboratory of Biopolymer Structure, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | |
Collapse
|
16
|
Lewandowska A, Ołdziej S, Liwo A, Scheraga HA. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin-binding protein G from Streptococcus. IV. Implication for the mechanism of folding of the parent protein. Biopolymers 2010; 93:469-80. [PMID: 20049918 DOI: 10.1002/bip.21365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 34-residue alpha/beta peptide [IG(28-61)], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the beta-hairpin in the native structure, forms structure similar to the beta-hairpin only at T = 313 K, and the structure is stabilized by non-native long-range hydrophobic interactions (Val47-Val59). On the other hand, the N-terminal part of IG(28-61), which corresponds to the middle alpha-helix in the native structure, is unstructured at low temperature (283 K) and forms an alpha-helix-like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long-range connectivities which would have supported packing between the C-terminal (beta-hairpin) and the N-terminal (alpha-helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726-736), based on Monte-Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed.
Collapse
Affiliation(s)
- Agnieszka Lewandowska
- University of Gdańsk, Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | |
Collapse
|