1
|
Hernández Berthet AS, Aptekmann AA, Tejero J, Sánchez IE, Noguera ME, Roman EA. Associating protein sequence positions with the modulation of quantitative phenotypes. Arch Biochem Biophys 2024; 755:109979. [PMID: 38583654 DOI: 10.1016/j.abb.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two different molecules. We found from 3 to 10 positions tightly associated with those phenotypes, depending on the studied case. We showed that these correlations appear using individual positions but an improvement is achieved when the most correlated positions are jointly analyzed. Noteworthy, we performed phenotype predictions using a simple linear model that links per-position divergences and differences in the observed phenotypes. Predictions are comparable to the state-of-art methodologies which, in most of the cases, are far more complex. All of the calculations are obtained at a very low information cost since the only input needed is a multiple sequence alignment of protein sequences with their associated quantitative phenotypes. The diversity of the explored systems makes our work a valuable tool to find sequence determinants of biological activity modulation and to predict various functional features for uncharacterized members of a protein family.
Collapse
Affiliation(s)
- Ayelén S Hernández Berthet
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| | - Ariel A Aptekmann
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08873, USA; Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ignacio E Sánchez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina.
| | - Martín E Noguera
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina.
| | - Ernesto A Roman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina.
| |
Collapse
|
2
|
Shibanuma Y, Nemoto N, Yamamoto N, Sampei GI, Kawai G. Crystal structure of adenylate kinase from an extremophilic archaeon Aeropyrum pernix with ATP and AMP. J Biochem 2021; 168:223-229. [PMID: 32271910 DOI: 10.1093/jb/mvaa043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of an adenylate kinase from an extremophilic archaeon Aeropyrum pernix was determined in complex with full ligands, ATP-Mg2+ and AMP, at a resolution of 2.0 Å. The protein forms a trimer as found for other adenylate kinases from archaea. Interestingly, the reacting three atoms, two phosphorus and one oxygen atoms, were located almost in line, supporting the SN2 nucleophilic substitution reaction mechanism. Based on the crystal structure obtained, the reaction coordinate was estimated by the quantum mechanics calculations combined with molecular dynamics. It was found that the reaction undergoes two energy barriers; the steps for breaking the bond between the oxygen and γ-phosphorus atoms of ATP to produce a phosphoryl fragment and creating the bond between the phosphoryl fragment and the oxygen atom of the β-phosphate group of ADP. The reaction coordinate analysis also suggested the role of amino-acid residues for the catalysis of adenylate kinase.
Collapse
Affiliation(s)
- Yoshinori Shibanuma
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| | - Naoki Nemoto
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| | - Norifumi Yamamoto
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| | - Gen-Ichi Sampei
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Gota Kawai
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| |
Collapse
|
3
|
Acosta J, Del Arco J, Del Pozo ML, Herrera-Tapias B, Clemente-Suárez VJ, Berenguer J, Hidalgo A, Fernández-Lucas J. Hypoxanthine-Guanine Phosphoribosyltransferase/adenylate Kinase From Zobellia galactanivorans: A Bifunctional Catalyst for the Synthesis of Nucleoside-5'-Mono-, Di- and Triphosphates. Front Bioeng Biotechnol 2020; 8:677. [PMID: 32671046 PMCID: PMC7326950 DOI: 10.3389/fbioe.2020.00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/01/2020] [Indexed: 01/13/2023] Open
Abstract
In our search for novel biocatalysts for the synthesis of nucleic acid derivatives, we found a good candidate in a putative dual-domain hypoxanthine-guanine phosphoribosyltransferase (HGPRT)/adenylate kinase (AMPK) from Zobellia galactanivorans (ZgHGPRT/AMPK). In this respect, we report for the first time the recombinant expression, production, and characterization of a bifunctional HGPRT/AMPK. Biochemical characterization of the recombinant protein indicates that the enzyme is a homodimer, with high activity in the pH range 6-7 and in a temperature interval from 30 to 80°C. Thermal denaturation experiments revealed that ZgHGPRT/AMPK exhibits an apparent unfolding temperature (Tm) of 45°C and a retained activity of around 80% when incubated at 40°C for 240 min. This bifunctional enzyme shows a dependence on divalent cations, with a remarkable preference for Mg2+ and Co2+ as cofactors. More interestingly, substrate specificity studies revealed ZgHGPRT/AMPK as a bifunctional enzyme, which acts as phosphoribosyltransferase or adenylate kinase depending upon the nature of the substrate. Finally, to assess the potential of ZgHGPRT/AMPK as biocatalyst for the synthesis of nucleoside-5′-mono, di- and triphosphates, the kinetic analysis of both activities (phosphoribosyltransferase and adenylate kinase) and the effect of water-miscible solvents on enzyme activity were studied.
Collapse
Affiliation(s)
- Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Madrid, Spain
| | - Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Madrid, Spain
| | | | - Beliña Herrera-Tapias
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Vicente Javier Clemente-Suárez
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia.,Faculty of Sport Sciences, Universidad Europea de Madrid, Urbanización El Bosque, Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Aurelio Hidalgo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Madrid, Spain.,Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia
| |
Collapse
|
4
|
Porebski BT, Nickson AA, Hoke DE, Hunter MR, Zhu L, McGowan S, Webb GI, Buckle AM. Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel 2015; 28:67-78. [PMID: 25691761 PMCID: PMC4330816 DOI: 10.1093/protein/gzv002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Consensus protein design is a rapid and reliable technique for the improvement of protein stability, which relies on the use of homologous protein sequences. To enhance the stability of a fibronectin type III (FN3) domain, consensus design was employed using an alignment of 2123 sequences. The resulting FN3 domain, FN3con, has unprecedented stability, with a melting temperature >100°C, a ΔGD−N of 15.5 kcal mol−1 and a greatly reduced unfolding rate compared with wild-type. To determine the underlying molecular basis for stability, an X-ray crystal structure of FN3con was determined to 2.0 Å and compared with other FN3 domains of varying stabilities. The structure of FN3con reveals significantly increased salt bridge interactions that are cooperatively networked, and a highly optimized hydrophobic core. Molecular dynamics simulations of FN3con and comparison structures show the cooperative power of electrostatic and hydrophobic networks in improving FN3con stability. Taken together, our data reveal that FN3con stability does not result from a single mechanism, but rather the combination of several features and the removal of non-conserved, unfavorable interactions. The large number of sequences employed in this study has most likely enhanced the robustness of the consensus design, which is now possible due to the increased sequence availability in the post-genomic era. These studies increase our knowledge of the molecular mechanisms that govern stability and demonstrate the rising potential for enhancing stability via the consensus method.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Morag R Hunter
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Liguang Zhu
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
6
|
Moon S, Jung DK, Phillips GN, Bae E. An integrated approach for thermal stabilization of a mesophilic adenylate kinase. Proteins 2014; 82:1947-59. [PMID: 24615904 DOI: 10.1002/prot.24549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022]
Abstract
Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure-guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | | | | | | |
Collapse
|
7
|
Wang X, Yuan Y, Teng M, Niu L, Gao Y. Crystallization and preliminary X-ray diffraction analysis of MJ0458, an adenylate kinase from Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1272-4. [PMID: 24192367 DOI: 10.1107/s1744309113026638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/26/2013] [Indexed: 11/10/2022]
Abstract
Adenylate kinase plays a very important role in regulating adenylate species in the cell. Methanocaldococcus jannaschii is a rich resource of unique enzymes. Here, MJ0458, an adenylate kinase from M. jannaschii, was crystallized. A set of X-ray diffraction data to 2.70 Å resolution was collected on beamline BL-17U of the Shanghai Synchrotron Radiation Facility (SSRF). The crystal belonged to space group P4(1)2(1)2 or P4(3)2(1)2. The unit-cell parameters were a = b = 76.18, c = 238.70 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Xiao Wang
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
A new class of adenylate kinase in methanogens is related to uridylate kinase. Arch Microbiol 2011; 194:141-5. [PMID: 22002406 DOI: 10.1007/s00203-011-0759-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/14/2011] [Accepted: 09/27/2011] [Indexed: 01/25/2023]
Abstract
The protein derived from the Methanocaldococcus jannaschii MJ0458 gene is annotated as a δ-1-pyrroline 5-carboxylate synthetase and is predicted to be related to aspartokinase and uridylate kinase. Analysis of the predicted protein sequence indicated that it is a unique kinase with few similarities to either uridylate or adenylate kinase. Here, we report that the MJ0458 gene product is a second type of archaeal adenylate kinase, AdkB. This enzyme is different from the established archaeal-specific adenylate kinase in both sequence and predicted tertiary structure.
Collapse
|
9
|
Nishi H, Koike R, Ota M. Cover and spacer insertions: Small nonhydrophobic accessories that assist protein oligomerization. Proteins 2011; 79:2372-9. [DOI: 10.1002/prot.23084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 04/22/2011] [Accepted: 05/09/2011] [Indexed: 01/15/2023]
|
10
|
Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. J Biol Inorg Chem 2010; 16:51-61. [PMID: 20821240 DOI: 10.1007/s00775-010-0700-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/02/2010] [Indexed: 12/13/2022]
Abstract
Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn(2+), Zn-AK; Co(2+), Co-AK; and Fe(2+), Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 Å, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.
Collapse
|