1
|
Structural analysis of the virulence gene protein IceA2 from Helicobacter pylori. Biochem Biophys Res Commun 2022; 612:162-168. [DOI: 10.1016/j.bbrc.2022.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
|
2
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim EJ, Silva J, Lee J, Lee S, Kim ST, Park SK, Jung KH. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1645-1664. [PMID: 33345419 DOI: 10.1111/tpj.15139] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinwon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
3
|
Guo M, Wang J, Zhang Y, Zhang L. Increased WD40 motifs in Planctomycete bacteria and their evolutionary relevance. Mol Phylogenet Evol 2020; 155:107018. [PMID: 33242584 DOI: 10.1016/j.ympev.2020.107018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Species of the family Planctomycetes have a complex intracellular structure, which is distinct from that of the majority of non-Planctomycetes bacteria. At present, genomic evidence of the evolution of intracellular complexity is lacking, cognitions of Planctomycetes's intracellular structure mainly rely on electron microscope observation. As the presence of WD40 motifs in eukaryotic proteins probably links to intracellular complexity, bioinformatic studies were conducted to detect and enumerate WD40 motifs, WD40 domains, and WD40 motif-bearing proteins in the genomes of 11 Planctomycetes species, 2775 non-Planctomycetes bacteria, and 63 representative eukaryotes. Compared to non-Planctomycetes bacteria (average 5 WD40 motifs and 1 WD40 motif-bearing protein per genome), a large increase in the number of WD40 motifs in Planctomycetes species (average 116 WD40 motifs and 26 WD40 motif-bearing proteins per genome) was observed. However, the average number of WD40 motifs in Planctomycetes species was significantly lower than that of eukaryotes (average 584 WD40 motifs and 193 WD40 motif-bearing proteins per genome). The number of WD40 motif-bearing proteins was found to correlate with genome size and gene number. Most WD40 motif-bearing proteins of Planctomycetes species belonged to the categories of 'ribosome assembly protein 4' and 'eukaryotic-like serine/threonine protein kinase.' Collinearity analysis of amino acid compositions of Planctomycetes and eukaryotic WD40 motifs revealed that the sequences of the four anti-parallel β-sheets of WD40 motifs were conserved. However, a number of Planctomycetes WD40 motifs had increased size of the interval region of β-sheets D and A. Taken together, results of this study suggest a positive correlation between the number of WD40 motif-bearing proteins and the evolution of Planctomycetes species toward a complex intracellular structure similar to that of eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
4
|
Structural modules of the stress-induced protein HflX: an outlook on its evolution and biological role. Curr Genet 2018; 65:363-370. [PMID: 30448945 DOI: 10.1007/s00294-018-0905-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/23/2022]
Abstract
Multifunctional proteins often show modular structures. A functional domain and the structural modules within the domain show evolutionary conservation of their spatial arrangement since that gives the protein its functionality. However, the question remains as to how members of different domains of life (Archaea, Bacteria, Eukarya), polish and perfect these modules within conserved multidomain proteins, to tailor functional proteins according to their specific requirements. In the quest for plausible answers to this question, we studied the bacterial protein HflX. HflX is a universally conserved member of the Obg-GTPase superfamily but its functional role in Archaea and Eukarya is barely known. It is a multidomain protein and possesses, in addition to its conserved GTPase domain, an ATP-binding N-terminal domain. It is involved in heat stress response in Escherichia coli and our laboratory recently identified an ATP-dependent RNA helicase activity of E. coli HflX, which is likely instrumental in rescuing ribosomes during heat stress. Because perception and response to stress is expected to be different in different life forms, the question is whether this activity is preserved in higher organisms or not. Thus, we explored the evolution pattern of different structural modules of HflX, with particular emphasis on the ATP-binding domain, to understand plausible biological role of HflX in other forms of life. Our analyses indicate that, while the evolutionary pattern of the GTPase domain follows a conserved phylogeny, conservation of the ATP-binding domain shows a complicated pattern. The limited analysis described here hints towards possible evolutionary adaptations and modifications of the domain, something which needs to be investigated in more depth in homologs from other life forms. Deciphering how nature 'tweaks' such modules, both structurally and functionally, may help in understanding the evolution of such proteins, and, on a large-scale, of stress-related proteins in general as well.
Collapse
|
5
|
Shen C, Du Y, Qiao F, Kong T, Yuan L, Zhang D, Wu X, Li D, Wu YD. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA. Sci Rep 2018; 8:12965. [PMID: 30154510 PMCID: PMC6113231 DOI: 10.1038/s41598-018-31140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2018] [Indexed: 01/25/2023] Open
Abstract
WD40 proteins belong to a big protein family with members identified in every eukaryotic proteome. However, WD40 proteins were only reported in a few prokaryotic proteomes. Using WDSP (http://wu.scbb.pkusz.edu.cn/wdsp/), a prediction tool, we identified thousands of prokaryotic WD40 proteins, among which few proteins have been biochemically characterized. As shown in our previous bioinformatics study, a large proportion of prokaryotic WD40 proteins have higher intramolecular sequence identity among repeats and more hydrogen networks, which may indicate better stability than eukaryotic WD40s. Here we report our biophysical and structural study on the WD40 domain of PkwA from Thermomonospora curvata (referred as tPkwA-C). We demonstrated that the stability of thermophilic tPkwA-C correlated to ionic strength and tPkwA-C exhibited fully reversible unfolding under different denaturing conditions. Therefore, the folding kinetics was also studied through stopped-flow circular dichroism spectra. The crystal structure of tPkwA-C was further resolved and shed light on the key factors that stabilize its beta-propeller structure. Like other WD40 proteins, DHSW tetrad has a significant impact on the stability of tPkwA-C. Considering its unique features, we proposed that tPkwA-C should be a great structural template for protein engineering to study key residues involved in protein-protein interaction of a WD40 protein.
Collapse
Affiliation(s)
- Chen Shen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ye Du
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Medical Research Center, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Fangfang Qiao
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tian Kong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Yuan
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Delin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianhui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dongyang Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,College of Chemistry, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Hu XJ, Li T, Wang Y, Xiong Y, Wu XH, Zhang DL, Ye ZQ, Wu YD. Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study. Sci Rep 2017; 7:10585. [PMID: 28878378 PMCID: PMC5587647 DOI: 10.1038/s41598-017-11115-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
As an ancient protein family, the WD40 repeat proteins often play essential roles in fundamental cellular processes in eukaryotes. Although investigations of eukaryotic WD40 proteins have been frequently reported, prokaryotic ones remain largely uncharacterized. In this paper, we report a systematic analysis of prokaryotic WD40 proteins and detailed comparisons with eukaryotic ones. About 4,000 prokaryotic WD40 proteins have been identified, accounting for 6.5% of all WD40s. While their abundances are less than 0.1% in most prokaryotes, they are enriched in certain species from Cyanobacteria and Planctomycetes, and participate in various functions such as prokaryotic signal transduction and nutrient synthesis. Comparisons show that a higher proportion of prokaryotic WD40s tend to contain multiple WD40 domains and a large number of hydrogen bond networks. The observation that prokaryotic WD40 proteins tend to show high internal sequence identity suggests that a substantial proportion of them (~20%) should be formed by recent or young repeat duplication events. Further studies demonstrate that the very young WD40 proteins, i.e., Highly-Repetitive WD40s, should be of higher stability. Our results have presented a catalogue of prokaryotic WD40 proteins, and have shed light on their evolutionary origins.
Collapse
Affiliation(s)
- Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yao Xiong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - De-Lin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
- College of Chemistry, Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
7
|
Santosh Kumar HS, Kumar V, Pattar S, Telkar S. Towards the construction of an interactome for Human WD40 protein family. Bioinformation 2016; 12:54-61. [PMID: 28104961 PMCID: PMC5237648 DOI: 10.6026/97320630012054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
WD40 proteins are involved in a variety of protein-protein interactions as part of a multi-protein assembly modulating diverse and critical cellular process. It is known that several proteins of this family have been implicated in different disorders such as developmental abnormalities and cancer. However, molecular functions of many proteins in this family are yet unknown and it is of clinical interest. Therefore, it is of interest to define, construct, understand, analyze, evaluate, redefine and refine an interactome for WD40 protein family. We used data from literature mining using Cytoscape followed by linear regression analysis between Betweenness centrality and stress scores to define a model to filter the nodes in a representative WD40 interactome construction. We identified 10 ranked nodes in this analysis and subsequent microarray data selected three of them in insulin resistance that is further demonstrated in HepG2 cell culture models. We also observed the expression of GRWD1, RBBP5 and WDR5 genes during perturbation. Thus, we report hub nodes of WD40 interactome in insulin resistance. It should be noted that the pipeline using protein interaction network help find new proteins of clinical importance.
Collapse
Affiliation(s)
| | - Vadlapudi Kumar
- Department of Biochemistry, Davanagere University, Shivagangothri, Davanagere - 577002, Karnataka, India
| | - Sharath Pattar
- National Bureau of Agriculturally Important Insects, Hebbal, Bengaluru, Karnataka, India
| | - Sandeep Telkar
- Department of Biotechnology and Bioinformatics, Kuvempu University,Shankaraghatta - 577451, Karnataka, India
| |
Collapse
|
8
|
Elsayed SM, Phillips JB, Heller R, Thoenes M, Elsobky E, Nürnberg G, Nürnberg P, Seland S, Ebermann I, Altmüller J, Thiele H, Toliat M, Körber F, Hu XJ, Wu YD, Zaki MS, Abdel-Salam G, Gleeson J, Boltshauser E, Westerfield M, Bolz HJ. Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Hum Mol Genet 2015; 24:2594-603. [PMID: 25616960 DOI: 10.1093/hmg/ddv022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/21/2015] [Indexed: 01/21/2023] Open
Abstract
Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening ('Kingsmore panel') do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screening.
Collapse
Affiliation(s)
- Solaf M Elsayed
- Medical Genetics Center, Cairo 11566, Egypt, Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | | | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Ezzat Elsobky
- Medical Genetics Center, Cairo 11566, Egypt, Children's Hospital, Ain Shams University, Cairo 11566, Egypt
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Saskia Seland
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Inga Ebermann
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany, Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mohammad Toliat
- Cologne Center for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Friederike Körber
- Department of Radiology, University of Cologne, 50937 Cologne, Germany
| | - Xue-Jia Hu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518000 Shenzhen, P. R. China, College of Chemistry, Peking University, 100871 Beijing, P. R. China
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo 11566, Egypt
| | - Ghada Abdel-Salam
- Department of Clinical Genetics, National Research Centre, Cairo 11566, Egypt
| | - Joseph Gleeson
- Laboratory of Neurogenetics, Howard Hughes Medical Institute, Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093, USA
| | - Eugen Boltshauser
- Department of Paediatric Neurology, University Children's Hospital of Zurich, 8032 Zurich, Switzerland and
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany, Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| |
Collapse
|
9
|
Wang Y, Hu XJ, Zou XD, Wu XH, Ye ZQ, Wu YD. WDSPdb: a database for WD40-repeat proteins. Nucleic Acids Res 2014; 43:D339-44. [PMID: 25348404 PMCID: PMC4383882 DOI: 10.1093/nar/gku1023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
WD40-repeat proteins, as one of the largest protein families, often serve as platforms to assemble functional complexes through the hotspot residues on their domain surfaces, and thus play vital roles in many biological processes. Consequently, it is highly required for researchers who study WD40 proteins and protein-protein interactions to obtain structural information of WD40 domains. Systematic identification of WD40-repeat proteins, including prediction of their secondary structures, tertiary structures and potential hotspot residues responsible for protein-protein interactions, may constitute a valuable resource upon this request. To achieve this goal, we developed a specialized database WDSPdb (http://wu.scbb.pkusz.edu.cn/wdsp/) to provide these details of WD40-repeat proteins based on our recently published method WDSP. The WDSPdb contains 63,211 WD40-repeat proteins identified from 3383 species, including most well-known model organisms. To better serve the community, we implemented a user-friendly interactive web interface to browse, search and download the secondary structures, 3D structure models and potential hotspot residues provided by WDSPdb.
Collapse
Affiliation(s)
- Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
10
|
Wang Y, Jiang F, Zhuo Z, Wu XH, Wu YD. A method for WD40 repeat detection and secondary structure prediction. PLoS One 2013; 8:e65705. [PMID: 23776530 PMCID: PMC3679165 DOI: 10.1371/journal.pone.0065705] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction.
Collapse
Affiliation(s)
- Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
| | - Zhu Zhuo
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
- * E-mail: (XHW); (YDW)
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
- College of Chemistry, Peking University, Beijing, P. R. China
- * E-mail: (XHW); (YDW)
| |
Collapse
|
11
|
Wu XH, Wang Y, Zhuo Z, Jiang F, Wu YD. Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by β-bulges and DHSW tetrads. PLoS One 2012; 7:e43005. [PMID: 22916195 PMCID: PMC3419727 DOI: 10.1371/journal.pone.0043005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of 36 available crystal structures of WD40 repeat proteins reveals widespread existence of a beta-bulge formed at the beginning of strand a and the end of strand b, termed as WDb–a bulge: among a total of 259 WD40 blades, there are 243 such β-bulges. The R1 positions in these WDb–a bulges have fair distributions of Arg, His, Ile, Leu, Lys, Met, Phe, Trp, Tyr and Val residues. These residues protrude on the top face of the WD40 proteins and can serve as hotspots for protein-protein interactions. An analysis of 29 protein complexes formed by 17 WD proteins reveals that these R1 residues, along with two other residues (R1-2 and D-1), are indeed widely involved in protein-protein interactions. Interestingly, these WDb–a bulges can be easily identified by the 4-amino acid sequences of (V, L, I), R1, R2, (V, L, I), along with some other significant amino acids. Thus, the hotspots of WD40 proteins on the top face can be readily predicted based on the primary sequences of the proteins. The literature-reported mutagenesis studies for Met30, MDV1, Tup11, COP1 and SPA1, which crystal structures are not available, can be readily understood based on the feature-based method. Applying the method, the twelve potential hotspots on the top face of Tup11 from S. japonicas have been identified. Our ITC measurements confirm seven of them, Tyr382, Arg284, Tyr426, Tyr508, Leu559, Lys575 and Ile601, are essential for recognizing Fep1. The ITC measurements further convinced that the feature-based method provides accurate prediction of hotspots on the top face.
Collapse
Affiliation(s)
- Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
- * E-mail: (XHW); (YDW)
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Zhu Zhuo
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, People’s Republic of China
- College of Chemistry, Peking University, Beijing, People’s Republic of China
- * E-mail: (XHW); (YDW)
| |
Collapse
|
12
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
13
|
Marrero Coto J, Ehrenhofer-Murray AE, Pons T, Siebers B. Functional analysis of archaeal MBF1 by complementation studies in yeast. Biol Direct 2011; 6:18. [PMID: 21392374 PMCID: PMC3062615 DOI: 10.1186/1745-6150-6-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Multiprotein-bridging factor 1 (MBF1) is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP) like proteins (e.g. Gcn4 in yeast) or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect)) and the TATA-box binding protein (TBP) in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH) domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1) and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ) as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human) the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ). Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus SCM1. Conclusions The absence of MBF1-interacting activators in the archaeal domain, the presence of a Zn ribbon motif in the divergent N-terminal domain of aMBF1 and the complementation experiments using archaeal- yeast chimeric proteins presented here suggests that archaeal MBF1 is not able to functionally interact with the transcription machinery and/or Gcn4 of S. cerevisiae. Based on modeling and structural prediction it is tempting to speculate that aMBF1 might act as a single regulator or non-essential transcription factor, which directly interacts with DNA via the positive charged linker or the basal transcription machinery via its Zn ribbon motif and the HTH domain. However, also alternative functions in ribosome biosynthesis and/or functionality have been discussed and therefore further experiments are required to unravel the function of MBF1 in Archaea. Reviewers This article was reviewed by William Martin, Patrick Forterre, John van der Oost and Fabian Blombach (nominated by Eugene V Koonin (United States)). For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Jeannette Marrero Coto
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Universitätsstr. 5, (S05 V03 F41), 45141 Essen, Germany
| | | | | | | |
Collapse
|
14
|
Wu XH, Chen RC, Gao Y, Wu YD. The effect of Asp-His-Ser/Thr-Trp tetrad on the thermostability of WD40-repeat proteins. Biochemistry 2010; 49:10237-45. [PMID: 20939513 DOI: 10.1021/bi101321y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We recently found that Asp-His-Ser/Thr-Trp hydrogen-bonded tetrads are widely and uniquely present in the WD40-repeat proteins. WDR5 protein is a seven WD40-repeat propeller with five such tetrads. To explore the effect of the tetrad on the structure and stability of WD40-repeat proteins, the wild-type WDR5 and its seven mutants involving the substitutions of tetrad residues have been isolated. The crystal structures of the wild-type WDR5 and its three WDR5 mutants have been determined by X-ray diffraction method. The mutations of the tetrad residues are found not to change the basic structural features. The denaturing profiles of the wild type and the seven mutants with the use of denaturant guanidine hydrochloride have been studied by circular dichroism spectroscopy to determine the folding free energies of these proteins. The folding free energies of the wild type and the S62A, S146A, S188A, D192E, W330F, W330Y, and D324E mutants are measured to be about -11.6, -2.7, -3.1, -2.9, -3.6, -7.1, -7.0, and -7.5 kcal/mol, respectively. These suggest that (1) the hydrogen bonds in these hydrogen bond networks are unusually strong; (2) each hydrogen-bonded tetrad provides over 12 kcal/mol stability to the protein; thus, the removal of any single tetrad would cause unfolding of the protein; (3) since there are five tetrads, the protein must be in a highly unstable state without the tetrads, which might be related to its biological functions.
Collapse
Affiliation(s)
- Xian-Hui Wu
- School of Chemical Biology and Biotechnology, Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | | | | | | |
Collapse
|