Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis.
PLoS Pathog 2017;
13:e1006441. [PMID:
28683086 PMCID:
PMC5500366 DOI:
10.1371/journal.ppat.1006441]
[Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/02/2017] [Indexed: 11/19/2022] Open
Abstract
Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry, yet host factors involved in this process remain largely unknown. Here, we employ genetic screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as a host factor required for optimal uncoating of the HIV-1 core to promote viral cDNA synthesis. Depletion of MELK inhibited HIV-1 cDNA synthesis with a concomitant delay of capsid disassembly. MELK phosphorylated Ser-149 of the capsid in the multimerized HIV-1 core, and a mutant virus carrying a phosphorylation-mimetic amino-acid substitution of Ser-149 underwent premature capsid disassembly and earlier HIV-1 cDNA synthesis, and eventually failed to enter the nucleus. Moreover, a small-molecule MELK inhibitor reduced the efficiency of HIV-1 replication in peripheral blood mononuclear cells in a dose-dependent manner. These results reveal a previously unrecognized mechanism of HIV-1 capsid disassembly and implicate MELK as a potential target for anti-HIV therapy.
Phosphorylation of the HIV-1 capsid has long been known to regulate viral uncoating and cDNA synthesis processes, but the cellular kinases responsible for this have remained unidentified. Here, we report that a host cell kinase MELK dictates optimal capsid disassembly through phosphorylation of Ser-149 in the multimerized HIV-1 core, which leads to efficient viral cDNA synthesis in target cells. The phosphorylation-mimetic capsid mutation of Ser-149 caused aberrant capsid disassembly and too-early completion of reverse transcription, and impeded nuclear entry of HIV-1 cDNA, suggesting the importance of well-ordered capsid disassembly in the early stages of viral replication. This discovery will facilitate understanding of the functional link among virus uncoating, reverse transcription and nuclear entry, and is expected to contribute to developing a novel strategy for AIDS therapy.
Collapse