1
|
Hu C, Inoue H, Sun W, Takeshita Y, Huang Y, Xu Y, Kanoh J, Chen Y. The Inner Nuclear Membrane Protein Bqt4 in Fission Yeast Contains a DNA-Binding Domain Essential for Telomere Association with the Nuclear Envelope. Structure 2018; 27:335-343.e3. [PMID: 30503780 DOI: 10.1016/j.str.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/30/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Telomeres, the protective caps at the end of the chromosomes, are often associated with the nuclear envelope (NE). Telomere positioning to the NE is dynamically regulated during mitosis and meiosis. One inner nuclear membrane protein, Bqt4, in Schizosaccharomyces pombe plays essential roles in connecting telomeres to the NE. However, the structural basis of Bqt4 in mediating telomere-NE association is not clear. Here, we report the crystal structure of the N-terminal domain of Bqt4. The N-terminal domain of Bqt4 structurally resembles the APSES-family DNA-binding domain and has a moderate double-stranded DNA-binding activity. Disruption of Bqt4-DNA interaction results in telomere detachment from the NE. These data suggest that the DNA-binding activity of Bqt4 may function to prime the chromosome onto the NE and promote telomere-NE association.
Collapse
Affiliation(s)
- Chunyi Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Haruna Inoue
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wenqi Sun
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, P. R. China
| | - Yumiko Takeshita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yaoguang Huang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Ying Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, P. R. China.
| |
Collapse
|
2
|
Liu J, Huang J, Zhao Y, Liu H, Wang D, Yang J, Zhao W, Taylor IA, Peng YL. Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains. Nucleic Acids Res 2014; 43:1231-40. [PMID: 25550425 PMCID: PMC4333399 DOI: 10.1093/nar/gku1351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The MBP1 family proteins are the DNA binding subunits of MBF cell-cycle transcription factor complexes and contain an N terminal winged helix-turn-helix (wHTH) DNA binding domain (DBD). Although the DNA binding mechanism of MBP1 from Saccharomyces cerevisiae has been extensively studied, the structural framework and the DNA binding mode of other MBP1 family proteins remains to be disclosed. Here, we determined the crystal structure of the DBD of PCG2, the Magnaporthe oryzae orthologue of MBP1, bound to MCB-DNA. The structure revealed that the wing, the 20-loop, helix A and helix B in PCG2-DBD are important elements for DNA binding. Unlike previously characterized wHTH proteins, PCG2-DBD utilizes the wing and helix-B to bind the minor groove and the major groove of the MCB-DNA whilst the 20-loop and helix A interact non-specifically with DNA. Notably, two glutamines Q89 and Q82 within the wing were found to recognize the MCB core CGCG sequence through making hydrogen bond interactions. Further in vitro assays confirmed essential roles of Q89 and Q82 in the DNA binding. These data together indicate that the MBP1 homologue PCG2 employs an unusual mode of binding to target DNA and demonstrate the versatility of wHTH domains.
Collapse
Affiliation(s)
- Junfeng Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jinguang Huang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanxiang Zhao
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Huaian Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Dawei Wang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Ian A Taylor
- Division of Molecular Structure, MRC-NIMR, London, NW7 1AA, UK
| | - You-Liang Peng
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|