1
|
Trevitt CR, Yashwanth Kumar DR, Fowler NJ, Williamson MP. Interactions between the protein barnase and co-solutes studied by NMR. Commun Chem 2024; 7:44. [PMID: 38418894 PMCID: PMC10902301 DOI: 10.1038/s42004-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Protein solubility and stability depend on the co-solutes present. There is little theoretical basis for selection of suitable co-solutes. Some guidance is provided by the Hofmeister series, an empirical ordering of anions according to their effect on solubility and stability; and by osmolytes, which are small organic molecules produced by cells to allow them to function in stressful environments. Here, NMR titrations of the protein barnase with Hofmeister anions and osmolytes are used to measure and locate binding, and thus to separate binding and bulk solvent effects. We describe a rationalisation of Hofmeister (and inverse Hofmeister) effects, which is similar to the traditional chaotrope/kosmotrope idea but based on solvent fluctuation rather than water withdrawal, and characterise how co-solutes affect protein stability and solubility, based on solvent fluctuations. This provides a coherent explanation for solute effects, and points towards a more rational basis for choice of excipients.
Collapse
Affiliation(s)
- Clare R Trevitt
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Certara UK Ltd, Level 2-Acero, 1 Concourse Way, Sheffield, S1 3BJ, UK
| | | | - Nicholas J Fowler
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Jia Bu Y, Nitz M. Incorporation of TePhe into Expressed Proteins is Minimally Perturbing. Chembiochem 2021; 22:2449-2456. [PMID: 34003548 DOI: 10.1002/cbic.202100160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/14/2021] [Indexed: 01/24/2023]
Abstract
Tellurium is a versatile heavy chalcogen with numerous applications in chemical biology, providing valuable probes in mass cytometry, fluorescence imaging and structural biology. L-Tellurienylalanine (TePhe) is an analogue of the proteinogenic amino acid L-phenylalanine (Phe) in which the phenyl side chain has been replaced by a 5-membered tellurophene moiety. High incorporation level of TePhe in expressed proteins at defined sites is expected to facilitate studies in proteomics, protein NMR spectroscopy, and structure elucidation. As a model we chose immunoglobulin-binding Protein G, B1 domain (GB1) to validate TePhe as a suitable structural analogue for Phe. We demonstrate that approximately 1 in 2 of all Phe sites within GB1 can be substituted with TePhe through expression in standard non-Phe-auxotrophic E. coli in Phe-deficient media containing glyphosate, an inhibitor of aromatic amino acid biosynthesis. The TePhe content of the GB1 sample can be further increased to 85 % through HPLC. Using NMR and CD spectroscopy, we confirm that the Phe-to-TePhe substitution has negligible impact on the global structure and stability of GB1.
Collapse
Affiliation(s)
- Yong Jia Bu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
3
|
Nakano Y, Komiya C, Shimizu H, Mishima H, Shiba K, Tsujimoto K, Ikeda K, Kashimada K, Dateki S, Yoshiura KI, Ogawa Y, Yamada T. A case of ezetimibe-effective hypercholesterolemia with a novel heterozygous variant in ABCG5. Endocr J 2020; 67:1099-1105. [PMID: 32641618 DOI: 10.1507/endocrj.ej20-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200-300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor. We noticed that her serum sitosterol and campesterol levels were relatively high. Targeted analysis sequencing identified a novel heterozygous ABCG5 variant (c.203A>T; p.Ile68Asn) in the patient, whereas no mutations were found in low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), or Niemann-Pick C1-like intracellular cholesterol transporter 1 (NPC1L1). While sitosterolemia is a rare disease, a recent study has reported that the incidence of loss-of-function mutation in the ABCG5 or ABCG8 gene is higher than we thought at 1 in 220 individuals. The present case suggests that serum plant sterol levels should be examined and ezetimibe treatment should be considered in patients with hypercholesterolemia who are resistant to HMG-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Yujiro Nakano
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hitomi Shimizu
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kumiko Shiba
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kazutaka Tsujimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sumito Dateki
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
4
|
Hendus-Altenburger R, Fernandes CB, Bugge K, Kunze MBA, Boomsma W, Kragelund BB. Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range. JOURNAL OF BIOMOLECULAR NMR 2019; 73:713-725. [PMID: 31598803 PMCID: PMC6875518 DOI: 10.1007/s10858-019-00283-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 05/26/2023]
Abstract
Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Catarina B Fernandes
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
5
|
Damry AM, Mayer MM, Broom A, Goto NK, Chica RA. Origin of conformational dynamics in a globular protein. Commun Biol 2019; 2:433. [PMID: 31799435 PMCID: PMC6879633 DOI: 10.1038/s42003-019-0681-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/06/2019] [Indexed: 11/28/2022] Open
Abstract
Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.
Collapse
Affiliation(s)
- Adam M. Damry
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Marc M. Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Aron Broom
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Natalie K. Goto
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| | - Roberto A. Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON Canada K1N 6N5
| |
Collapse
|
6
|
Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP, Sander C, Marks DS. Inferring protein 3D structure from deep mutation scans. Nat Genet 2019; 51:1170-1176. [PMID: 31209393 PMCID: PMC7295002 DOI: 10.1038/s41588-019-0432-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
We describe an experimental method of three-dimensional (3D) structure determination that exploits the increasing ease of high-throughput mutational scans. Inspired by the success of using natural, evolutionary sequence covariation to compute protein and RNA folds, we explored whether 'laboratory', synthetic sequence variation might also yield 3D structures. We analyzed five large-scale mutational scans and discovered that the pairs of residues with the largest positive epistasis in the experiments are sufficient to determine the 3D fold. We show that the strongest epistatic pairings from genetic screens of three proteins, a ribozyme and a protein interaction reveal 3D contacts within and between macromolecules. Using these experimental epistatic pairs, we compute ab initio folds for a GB1 domain (within 1.8 Å of the crystal structure) and a WW domain (2.1 Å). We propose strategies that reduce the number of mutants needed for contact prediction, suggesting that genomics-based techniques can efficiently predict 3D structure.
Collapse
Affiliation(s)
- Nathan J Rollins
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Frank J Poelwijk
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael A Stiffler
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas P Gauthier
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Dreydoppel M, Becker P, Raum HN, Gröger S, Balbach J, Weininger U. Equilibrium and Kinetic Unfolding of GB1: Stabilization of the Native State by Pressure. J Phys Chem B 2018; 122:8846-8852. [PMID: 30185038 DOI: 10.1021/acs.jpcb.8b06888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p Ka values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Paul Becker
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Stefan Gröger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| |
Collapse
|
8
|
Phillips M, To J, Yamazaki T, Nagashima T, Torres J, Pervushin K. Binding of a small molecule water channel inhibitor to aquaporin Z examined by solid-state MAS NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 71:91-100. [PMID: 29916035 DOI: 10.1007/s10858-018-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Aquaporins are integral membrane proteins that facilitate water flow across biological membranes. Their involvement in multiple physiological functions and disease states has prompted intense research to discover water channel activity modulators. However, inhibitors found so far are weak and/or lack specificity. For organic compounds, which lack of high electron-dense atoms, the identification of binding sites is even more difficult. Nuclear magnetic resonance spectroscopy (NMR) requires large amounts of the protein, and expression and purification of mammalian aquaporins in large quantities is a difficult task. However, since aquaporin Z (AqpZ) can be purified and expressed in good quantities and has a high similarity to human AQP1 (~ 40% identity), it can be used as a model for studying the structure and function of human aquaporins. In the present study, we have used solid-state MAS NMR to investigate the binding of a lead compound [1-(4-methylphenyl)1H-pyrrole-2,5-dione] to AqpZ, through mapping of chemical shift perturbations in the presence of the compound.
Collapse
Affiliation(s)
- Margaret Phillips
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Toshio Yamazaki
- RIKEN Centre for Life Science Technologies, Kanagawa, 230-0045, Japan
| | - Toshio Nagashima
- RIKEN Centre for Life Science Technologies, Kanagawa, 230-0045, Japan
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Rational design of proteins that exchange on functional timescales. Nat Chem Biol 2017; 13:1280-1285. [DOI: 10.1038/nchembio.2503] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
|
10
|
Iwashita T, Konuma T, Harada E, Mori S, Sugase K. Use of glass capillaries to suppress thermal convection in NMR tubes in diffusion measurements. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:729-733. [PMID: 27072530 DOI: 10.1002/mrc.4437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Diffusion ordered spectroscopy (DOSY) is used to determine the translational diffusion coefficients of molecules in solution. However, DOSY is highly susceptible to spurious spectral peaks resulting from thermal convection occurring in the NMR tube. Thermal convection therefore must be suppressed for accurate estimation of translational diffusion coefficients. In this study, we developed a new method to effectively suppress thermal convection using glass capillaries. A total of 6 to 18 capillaries (0.8-mm outer diameter) were inserted into a regular 5-mm NMR tube. The capillaries had minimal effect on magnetic field homogeneity and enabled us to obtain clean DOSY spectra of a mixture of small organic compounds. Moreover, the capillaries did not affect chemical shifts or signal intensities in two-dimensional heteronuclear single quantum coherence spectra. Capillaries are a simple and inexpensive means of suppressing thermal convection and thus can be used in a wide variety of DOSY experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Takashi Iwashita
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Tsuyoshi Konuma
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erisa Harada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| |
Collapse
|
11
|
Morrison EA, Robinson AE, Liu Y, Henzler-Wildman KA. Asymmetric protonation of EmrE. J Gen Physiol 2015; 146:445-61. [PMID: 26573622 PMCID: PMC4664823 DOI: 10.1085/jgp.201511404] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/13/2015] [Indexed: 01/26/2023] Open
Abstract
The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its "active-site" residues--glutamate 14 (Glu14) from each subunit--must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with (1)H-(15)N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Anne E Robinson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Yongjia Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine A Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
12
|
Affiliation(s)
- Mathias A.S. Hass
- Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Frans A.A. Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
13
|
Wallerstein J, Weininger U, Khan MAI, Linse S, Akke M. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation. J Am Chem Soc 2015; 137:3093-101. [PMID: 25665463 DOI: 10.1021/ja513205s] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.
Collapse
Affiliation(s)
- Johan Wallerstein
- Department of Biophysical Chemistry and ‡Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
14
|
Platzer G, Okon M, McIntosh LP. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. JOURNAL OF BIOMOLECULAR NMR 2014; 60:109-129. [PMID: 25239571 DOI: 10.1007/s10858-014-9862-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.
Collapse
Affiliation(s)
- Gerald Platzer
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
15
|
Kukic P, Farrell D, McIntosh LP, García-Moreno E B, Jensen KS, Toleikis Z, Teilum K, Nielsen JE. Protein dielectric constants determined from NMR chemical shift perturbations. J Am Chem Soc 2013; 135:16968-76. [PMID: 24124752 DOI: 10.1021/ja406995j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatic calculations are essential for this purpose, but their use has been limited by a long-standing discussion on which value to use for the dielectric constants (ε(eff) and ε(p)) required in Coulombic and Poisson-Boltzmann models. The currently used values for ε(eff) and ε(p) are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for ε(eff) and ε(p) by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in 14 proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (ε(eff)) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (ε(p)) ranged from 2 to 5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders and how different it is from the ε(p) of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of ε(p) = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pK(a) values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable ε(p) common to most folded proteins.
Collapse
Affiliation(s)
- Predrag Kukic
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin , Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Williamson MP. Using chemical shift perturbation to characterise ligand binding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:1-16. [PMID: 23962882 DOI: 10.1016/j.pnmrs.2013.02.001] [Citation(s) in RCA: 974] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by simultaneous fitting of many measured shift changes, or more simply by adding substoichiometric amounts of ligand. The chemical shift changes can be used as restraints for docking ligand onto protein. By use of quantitative calculations of ligand-induced chemical shift changes, it is becoming possible to determine not just the position but also the orientation of ligands.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
17
|
Nielsen G, Jonker HRA, Vajpai N, Grzesiek S, Schwalbe H. Kinase in Motion: Insights into the Dynamic Nature of p38α by High-Pressure NMR Spectroscopic Studies. Chembiochem 2013; 14:1799-806. [DOI: 10.1002/cbic.201300170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 11/11/2022]
|
18
|
Zhu T, Zhang JZH, He X. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model. J Chem Theory Comput 2013; 9:2104-14. [PMID: 26583557 DOI: 10.1021/ct300999w] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have performed a density functional theory (DFT) calculation of the amide proton NMR chemical shift in proteins using a recently developed automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. Systematic investigation was carried out to examine the influence of explicit solvent molecules, cooperative hydrogen bonding effects, density functionals, size of the basis sets, and the local geometry of proteins on calculated chemical shifts. Our result demonstrates that the predicted amide proton ((1)HN) NMR chemical shift in explicit solvent shows remarkable improvement over that calculated with the implicit solvation model. The cooperative hydrogen bonding effect is also shown to improve the accuracy of (1)HN chemical shifts. Furthermore, we found that the OPBE exchange-correlation functional is the best density functional for the prediction of protein (1)HN chemical shifts among a selective set of DFT methods (namely, B3LYP, B3PW91, M062X, M06L, mPW1PW91, OB98, OPBE), and the locally dense basis set of 6-311++G**/4-31G* is shown to be sufficient for (1)HN chemical shift calculation. By taking ensemble averaging into account, (1)HN chemical shifts calculated by the AF-QM/MM approach can be used to validate the performance of various force fields. Our study underscores that the electronic polarization of protein is of critical importance to stabilizing hydrogen bonding, and the AF-QM/MM method is able to describe the local chemical environment in proteins more accurately than most widely used empirical models.
Collapse
Affiliation(s)
- Tong Zhu
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China 200062
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China 200062.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China 200062
| |
Collapse
|
19
|
Sundd M. Conformational and dynamic changes at the interface contribute to ligand binding by ubiquitin. Biochemistry 2012; 51:8111-24. [PMID: 23035694 DOI: 10.1021/bi3004268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquitin interacts with numerous domains and motifs in its lifetime that vary in structure but bind the same hydrophobic patch. To identify the structural features of ubiquitin that make it an exceptional protein-protein interaction partner, we have studied the interaction of ubiquitin with the signal transducing adaptor molecule-1 ubiquitin interacting motif (UIM) using nuclear magnetic resonance. Our studies bring to light the role of the inherent backbone flexibility of ubiquitin in its interactions with a large array of binding partners, revealed from the changes in C(α) chemical shifts, backbone dynamics, and hydrogen bond lengths upon UIM binding. The crystal structures of ubiquitin complexes lend further support to our findings, underscoring the importance of the unique and flexible hydrogen bond network within ubiquitin and simultaneously providing insights into the nature of the slow motions. Taken together, our studies provide an in-depth view of the molecular changes associated with ligand recognition by ubiquitin.
Collapse
Affiliation(s)
- Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
20
|
Tomlinson JH, Williamson MP. Amide temperature coefficients in the protein G B1 domain. JOURNAL OF BIOMOLECULAR NMR 2012; 52:57-64. [PMID: 22076570 DOI: 10.1007/s10858-011-9583-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Temperature coefficients have been measured for backbone amide (1)H and (15)N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283-313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK(a) values. (1)H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide (15)N coefficients have no clear relationship with structure.
Collapse
Affiliation(s)
- Jennifer H Tomlinson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
21
|
Computational analysis of non-covalent polymer–protein interactions governing antibody orientation. Anal Bioanal Chem 2011; 402:1731-6. [DOI: 10.1007/s00216-011-5593-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/08/2011] [Accepted: 11/20/2011] [Indexed: 11/26/2022]
|
22
|
McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. JOURNAL OF BIOMOLECULAR NMR 2011; 51:5-19. [PMID: 21947911 DOI: 10.1007/s10858-011-9537-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK (A) values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain (13)C(γ) nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK (A) values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK (Ai) values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK (A) values and hence catalytic roles of these two residues result from their electrostatic coupling.
Collapse
Affiliation(s)
- Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Webb H, Tynan-Connolly BM, Lee GM, Farrell D, O'Meara F, Søndergaard CR, Teilum K, Hewage C, McIntosh LP, Nielsen JE. Remeasuring HEWL pK(a) values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pK(a) calculations. Proteins 2010; 79:685-702. [PMID: 21287606 DOI: 10.1002/prot.22886] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 08/24/2010] [Accepted: 09/03/2010] [Indexed: 11/08/2022]
Abstract
Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured by tracking the NMR chemical shifts of several reporter nuclei versus sample pH. However, careful analysis of these curves is needed to extract residue-specific pK(a) values since pH-dependent chemical shift changes can arise from many sources, including through-bond inductive effects, through-space electric field effects, and conformational changes. We have re-measured titration curves for all carboxylates and His 15 in Hen Egg White Lysozyme (HEWL) by recording the pH-dependent chemical shifts of all backbone amide nitrogens and protons, Asp/Glu side chain protons and carboxyl carbons, and imidazole protonated carbons and protons in this protein. We extracted pK(a) values from the resulting titration curves using standard fitting methods, and compared these values to each other, and with those measured previously by ¹H NMR (Bartik et al., Biophys J 1994;66:1180–1184). This analysis gives insights into the true accuracy associated with experimentally measured pK(a) values. We find that apparent pK(a) values frequently differ by 0.5–1.0 units depending upon the nuclei monitored, and that larger differences occasionally can be observed. The variation in measured pK(a) values, which reflects the difficulty in fitting and assigning pH-dependent chemical shifts to specific ionization equilibria, has significant implications for the experimental procedures used for measuring protein pK(a) values, for the benchmarking of protein pK(a) calculation algorithms, and for the understanding of protein electrostatics in general.
Collapse
Affiliation(s)
- Helen Webb
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|