1
|
Molecular Mechanisms behind Safranal's Toxicity to HepG2 Cells from Dual Omics. Antioxidants (Basel) 2022; 11:antiox11061125. [PMID: 35740022 PMCID: PMC9219844 DOI: 10.3390/antiox11061125] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The spice saffron (Crocus sativus) has anticancer activity in several human tissues, but the molecular mechanisms underlying its potential therapeutic effects are poorly understood. We investigated the impact of safranal, a small molecule secondary metabolite from saffron, on the HCC cell line HepG2 using untargeted metabolomics (HPLC–MS) and transcriptomics (RNAseq). Increases in glutathione disulfide and other biomarkers for oxidative damage contrasted with lower levels of the antioxidants biliverdin IX (139-fold decrease, p = 5.3 × 105), the ubiquinol precursor 3-4-dihydroxy-5-all-trans-decaprenylbenzoate (3-fold decrease, p = 1.9 × 10−5), and resolvin E1 (−3282-fold decrease, p = 45), which indicates sensitization to reactive oxygen species. We observed a significant increase in intracellular hypoxanthine (538-fold increase, p = 7.7 × 10−6) that may be primarily responsible for oxidative damage in HCC after safranal treatment. The accumulation of free fatty acids and other biomarkers, such as S-methyl-5′-thioadenosine, are consistent with safranal-induced mitochondrial de-uncoupling and explains the sharp increase in hypoxanthine we observed. Overall, the dual omics datasets describe routes to widespread protein destabilization and DNA damage from safranal-induced oxidative stress in HCC cells.
Collapse
|
2
|
Liang C, Zhu J, Ramelot TA, Kennedy MA, Yue X, Li X, Liu M, He T, Yang Y. Solution NMR structure of CHU_1110 from Cytophaga hutchinsonii, an AHSA1 protein potentially involved in metal ion stress response. Proteins 2018; 87:91-95. [PMID: 30368907 DOI: 10.1002/prot.25622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
We report the solution nuclear magnetic resonance (NMR) structure of CHU_1110 from Cytophaga hutchinsonii. CHU_1110 contains three α-helices and one antiparallel β-sheet, forming a large cavity in the center of the protein, which are consistent with the structural characteristics of AHSA1 protein family. This protein shows high structural similarities to the prokaryotic proteins RHE_CH02687 from Rhizobium etli and YndB from Bacillus subtilis, which can bind with flavinoids. Unlike these two homologs, CHU_1110 shows no obvious interaction with flavonoids in NMR titration experiments. In addition, no direct interaction has been observed between CHU_1110 and ATP, although many homologous sequences of CHU_1110 have been annotated as ATPase. Combining the analysis of structural similarity of CHU_1110 and genomic context of its encoding gene, we speculate that CHU_1110 may be involved in the stress response of bacteria to heavy metal ions, even though its specific biological functions that need to be further investigated.
Collapse
Affiliation(s)
- Chunjie Liang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xuegang Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Liang C, He T, Li T, Yang Y, Zhu J, Liu M. Chemical shift assignments of CHU_1110: an AHSA1-like protein from Cytophaga hutchinsonii. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:155-158. [PMID: 29318533 DOI: 10.1007/s12104-018-9799-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
AHSA1 protein family is one of the four largest families in the Bet v1-like protein superfamily. The functions and structures of proteins in AHSA1 family are still largely unknown. CHU_1110 with 167 amino acids and a molecular weight of 19.2 kDa is a member of the AHSA1 family from Cytophaga hutchinsonii, a soil bacterium known for its ability to digest crystalline cellulose. Here we report the complete 1H, 13C and 15N chemical shift assignments of CHU_1110. The secondary structural elements of CGL2373 are consistent with the canonical AHSA1 structure. However the sequence identity of CHU_1110 with other members of AHSA1 family with functional and structural reports, such as RHE_CH02687 from Rhizobium etli, Aha1 from Homo sapiens and Yndb from Bacillus subtilis, are very low, which may suggest a different function of CHU_1110. Our chemical shift assignments of CHU_1110 are essential for the following structural and functional research of CHU_1110.
Collapse
Affiliation(s)
- Chunjie Liang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
4
|
Esmaeilishirazifard E, De Vizio D, Moschos SA, Keshavarz T. Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. AMB Express 2017; 7:78. [PMID: 28391484 PMCID: PMC5385187 DOI: 10.1186/s13568-017-0381-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing molecules (QSMs) are involved in the regulation of complicated processes helping bacterial populations respond to changes in their cell-density. Although the QS gene cluster (comQXPA) has been identified in the genome sequence of some bacilli, the QS system B. licheniformis has not been investigated in detail, and its QSM (ComX pheromone) has not been identified. Given the importance of this antagonistic bacterium as an industrial workhorse, this study was aimed to elucidate B. licheniformis NCIMB-8874 QS. The results obtained from bioinformatics studies on the whole genome sequence of this strain confirmed the presence of essential quorum sensing-related genes. Although polymorphism was verified in three proteins of this cluster, ComQ, precursor-ComX and ComP, the transcription factor ComA was confirmed as the most conserved protein. The cell–cell communication of B. licheniformis NCIMB-8874 was investigated through further elucidation of the ComX pheromone as 13-amino acid peptide. The peptide sequence of the pheromone has been described through biochemical characterisation.
Collapse
|
5
|
Liang C, Zhu J, Hu R, Ramelot TA, Kennedy MA, Liu M, Yang Y. Solution NMR structure of RHE_CH02687 from Rhizobium etli: A novel flavonoid-binding protein. Proteins 2017; 85:951-956. [PMID: 28160315 DOI: 10.1002/prot.25258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 01/27/2017] [Indexed: 11/11/2022]
Abstract
We report the solution NMR structure of RHE_CH02687 from Rhizobium etli. Its structure consists of two β-sheets that together with two short and one long α-helix form a hydrophobic cavity. This protein shows a high structural similarity to the prokaryotic protein YndB from Bacillus subtilis, and the eukaryotic protein Aha1. NMR titration experiments confirmed that RHE_CH02687, like its homolog YndB, interacted with flavonoids, giving support for a biological function as a flavonoid sensor in the symbiotic interaction between R. etli and plants. In addition, our study showed no evidence for a direct interaction between RHE_CH02687 and HtpG, the R. etli homolog of Hsp90. Proteins 2017; 85:951-956. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunjie Liang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio, 45056
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio, 45056
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
6
|
Rossi P, Shi L, Liu G, Barbieri CM, Lee HW, Grant TD, Luft JR, Xiao R, Acton TB, Snell EH, Montelione GT, Baker D, Lange OF, Sgourakis NG. A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 2015; 83:309-17. [PMID: 25388768 PMCID: PMC5061451 DOI: 10.1002/prot.24719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023]
Abstract
Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology-based methods, protein-protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet-V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution.
Collapse
Affiliation(s)
- Paolo Rossi
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Lei Shi
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Christopher M. Barbieri
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Hsiau-Wei Lee
- Department of Chemistry, Complex Carbohydrate Research Center, and Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, and Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602
| | - Thomas D. Grant
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Joseph R. Luft
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Rong Xiao
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Thomas B. Acton
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Gaetano T. Montelione
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Oliver F. Lange
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Nikolaos G. Sgourakis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Ben Fredj F, Wali A, Khadhraoui M, Han J, Funamizu N, Ksibi M, Isoda H. Risk assessment of heavy metal toxicity of soil irrigated with treated wastewater using heat shock proteins stress responses: case of El Hajeb, Sfax, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4716-4726. [PMID: 24352546 DOI: 10.1007/s11356-013-2411-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Heavy metal contamination of soil resulting from treated wastewater irrigation can cause serious concerns resulting from consuming contaminated crops. Therefore, it is crucial to assess hazard related to wastewater reuse. In the present investigation, we suggest the use of biomarker approach as a new tool for risk assessment of wastewater reuse in irrigation as an improvement to the conventional detection of physicochemical accumulation in irrigated sites. A field study was conducted at two major sites irrigated with treated wastewater and comparisons were made with a control site. Different soil depths were considered to investigate the extent of heavy metal leaching, the estrogenic activity, and the biomarker response. Results have shown that a longer irrigation period (20 years) caused a slight decrease in soil metal levels when compared to the soil irrigated for 12 years. The highest levels of Cr, Co, Ni, Pb, and Zn were detected at 20 and 40 cm horizons in plots irrigated with wastewater for 12 years. The latter finding could be attributed to chemical leaching to deeper plots for longer irrigation period. Furthermore, the treated wastewater sample showed a high estrogenic activity while none of the soil samples could induce any estrogenic activity. Regarding the stress response, it was observed that the highest stress shown by the HSP47 promoter transfected cells was induced by a longer irrigation period. Finally, the treated wastewater and the irrigated soils exhibited an overexpression of HSP60 in comparison with reference soil following 1 h exposure. In conclusion, in vitro techniques can be efficiently used to assess potential hazard related to wastewater reuse.
Collapse
Affiliation(s)
- Fahmi Ben Fredj
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki, 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Ben Fredj F, Han J, Irie M, Funamizu N, Ghrabi A, Isoda H. Assessment of wastewater-irrigated soil containing heavy metals and establishment of specific biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:54-62. [PMID: 22795889 DOI: 10.1016/j.ecoenv.2012.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/18/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
Irrigation with treated wastewater (TWW) is a vital alternative for arid and semi-arid lands but it poses pollution-risk to soil, vegetation and groundwater. Therefore, in the present study, in vitro bioassays were used to evaluate the adverse effects of TWW and irrigated-soil extract sample, on mammalian cells, with respect to heavy metal--Ni, Cd, Pb, Fe, Al-content. The heat shock protein (HSP) 47, E-screen, and transepithelial electrical resistance (TEER) assays served to investigate the stress response of treated-HSP47-transfected Chinese hamster ovary (CHO) cells, the estrogenic activity of the samples in MCF-7 breast cancer cells, and the barrier function (BF) of Caco-2 cells. Furthermore, proteomics analyses were performed to shed light on involved mechanisms and to establish pollution biomarkers. Results showed that the TWW elicited a stress response on HSP cells from 0.1% concentration while soil extract samples exhibited a stress at 1%. TWW induced an estrogenic activity at 10%; up-regulating cell proliferation and tumor-related proteins. Soil extract triggered the enhanced expression of HSP70 family proteins as survival mechanisms against their cytotoxicity toward MCF-7 cells. Moreover, depending on the concentration, 1% of soil extract from 20 cm depth (T20) resulted in a disruption of BF in Caco-2 cells involving cell metabolism, protein synthesis and tumor marker proteins, whereas, 5% of T20 induced the expression of BF-related proteins associated to heat shock, oxidative stress, cell proliferation and glycolytic metabolic pathway. These biological techniques were found to be extremely useful to evaluate the impact of wastewater reuse and to establish specific biomarkers that are common proteins for humans, other mammals and plants. Future studies should focus on exposure quantifications.
Collapse
Affiliation(s)
- F Ben Fredj
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Shortridge MD, Bokemper M, Copeland JC, Stark JL, Powers R. Correlation between protein function and ligand binding profiles. J Proteome Res 2011; 10:2538-45. [PMID: 21366353 DOI: 10.1021/pr200015d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure, or evolutionary information and, therefore, extends our ability to analyze and functionally annotate novel genes.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | | | | | | | | |
Collapse
|
10
|
Searching the protein structure database for ligand-binding site similarities using CPASS v.2. BMC Res Notes 2011; 4:17. [PMID: 21269480 PMCID: PMC3057182 DOI: 10.1186/1756-0500-4-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/26/2011] [Indexed: 11/17/2022] Open
Abstract
Background A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2) database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR) protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function. Findings We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG) to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated. Conclusions CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores for false positives by ~30%, while leaving true positives unaffected. Importantly, receiver operating characteristics (ROC) curves demonstrate the high correlation between CPASS similarity scores and an accurate functional assignment. As indicated by distribution curves, scores ≥ 30% infer a functional similarity. Software URL: http://cpass.unl.edu.
Collapse
|
11
|
Stark JL, Powers R. Application of NMR and molecular docking in structure-based drug discovery. Top Curr Chem (Cham) 2011; 326:1-34. [PMID: 21915777 DOI: 10.1007/128_2011_213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug discovery is a complex and costly endeavor, where few drugs that reach the clinical testing phase make it to market. High-throughput screening (HTS) is the primary method used by the pharmaceutical industry to identify initial lead compounds. Unfortunately, HTS has a high failure rate and is not particularly efficient at identifying viable drug leads. These shortcomings have encouraged the development of alternative methods to drive the drug discovery process. Specifically, nuclear magnetic resonance (NMR) spectroscopy and molecular docking are routinely being employed as important components of drug discovery research. Molecular docking provides an extremely rapid way to evaluate likely binders from a large chemical library with minimal cost. NMR ligand-affinity screens can directly detect a protein-ligand interaction, can measure a corresponding dissociation constant, and can reliably identify the ligand binding site and generate a co-structure. Furthermore, NMR ligand affinity screens and molecular docking are perfectly complementary techniques, where the combination of the two has the potential to improve the efficiency and success rate of drug discovery. This review will highlight the use of NMR ligand affinity screens and molecular docking in drug discovery and describe recent examples where the two techniques were combined to identify new and effective therapeutic drugs.
Collapse
Affiliation(s)
- Jaime L Stark
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | |
Collapse
|