1
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
2
|
Sunidhi S, Sacher S, Atul, Garg P, Ray A. Elucidating the Structural Features of ABCA1 in its Heterogeneous Membrane Environment. Front Mol Biosci 2022; 8:803078. [PMID: 35155567 PMCID: PMC8830745 DOI: 10.3389/fmolb.2021.803078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
ATP Binding Cassette Transporter A1 (ABCA1) plays an integral part in Reverse Cholesterol Transport (RCT) and is critical for maintaining lipid homeostasis. One theory of lipid efflux by the transporter (alternating access) proposes that ABCA1 harbours two different conformations that provide alternating access for lipid binding and release. This is followed by sequestration via a direct interaction between ABCA1 and its partner, ApoA1. The other theory (lateral access) proposes that ABCA1 obtains lipids laterally from the membrane to form a temporary extracellular “reservoir”. This reservoir contains an isolated lipid monolayer due to the net accumulation of lipids in the exofacial leaflet. Recently, a full-length Cryo-EM structure of this 2,261-residue transmembrane protein showed its discreetly folded domains and have detected the presence of a tunnel enclosed within the extracellular domains (ECDs) but not in the TMDs, giving it an outward-facing conformation. This structure was hypothesized to substantiate the lateral access theory. Utilizing long time-scale multiple replica atomistic molecular dynamics simulations (MDS), we simulated the structure in a large heterogeneous lipid environment and found that the protein undergoes several large conformational changes in its extremities. We observed that the cavity enclosed within ATP unbound form of ABCA1 is narrow at the distal ends of TMD as well as the ECD region substantiating the “lateral access” theory. We have also characterized ABCA1 and the lipid dynamics along with the protein-lipid interactions in the heterogeneous environment, providing novel insights into understanding ABCA1 conformation at an atomistic level.
Collapse
|
3
|
Abreu B, Cruz C, Oliveira ASF, Soares CM. ATP hydrolysis and nucleotide exit enhance maltose translocation in the MalFGK 2E importer. Sci Rep 2021; 11:10591. [PMID: 34012037 PMCID: PMC8134467 DOI: 10.1038/s41598-021-89556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
ATP binding cassette (ABC) transporters employ ATP hydrolysis to harness substrate translocation across membranes. The Escherichia coli MalFGK2E maltose importer is an example of a type I ABC importer and a model system for this class of ABC transporters. The MalFGK2E importer is responsible for the intake of malto-oligossacharides in E.coli. Despite being extensively studied, little is known about the effect of ATP hydrolysis and nucleotide exit on substrate transport. In this work, we studied this phenomenon using extensive molecular dynamics simulations (MD) along with potential of mean force calculations of maltose transport across the pore, in the pre-hydrolysis, post-hydrolysis and nucleotide-free states. We concluded that ATP hydrolysis and nucleotide exit trigger conformational changes that result in the decrease of energetic barriers to maltose translocation towards the cytoplasm, with a concomitant increase of the energy barrier in the periplasmic side of the pore, contributing for the irreversibility of the process. We also identified key residues that aid in positioning and orientation of maltose, as well as a novel binding pocket for maltose in MalG. Additionally, ATP hydrolysis leads to conformations similar to the nucleotide-free state. This study shows the contribution of ATP hydrolysis and nucleotide exit in the transport cycle, shedding light on ABC type I importer mechanisms.
Collapse
Affiliation(s)
- Bárbara Abreu
- grid.10772.330000000121511713ITQB NOVA, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carlos Cruz
- grid.10772.330000000121511713ITQB NOVA, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - A. Sofia F. Oliveira
- grid.10772.330000000121511713ITQB NOVA, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal ,grid.5337.20000 0004 1936 7603School of Biochemistry and Centre for Computational Chemistry, University of Bristol, Bristol, UK
| | - Cláudio M. Soares
- grid.10772.330000000121511713ITQB NOVA, Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Structural dynamics of ABC transporters: molecular simulation studies. Biochem Soc Trans 2021; 49:405-414. [PMID: 33634827 DOI: 10.1042/bst20200710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
The biological activities of living organisms involve various inputs and outputs. The ATP-driven substances (biomolecules) responsible for these kinds of activities through membrane (i.e. uptake and efflux of substrates) include ATP-binding cassette (ABC) transporters, some of which play important roles in multidrug resistance. The basic architecture of ABC transporters comprises transmembrane domains (TMDs) and nucleotide-binding domains (NBDs). The functional dynamics (substrate transport) of ABC transporters are realized by concerted motions, such as NBD dimerization, mechanical transmission via coupling helices (CHs), and the translocation of substrates through TMDs, which are induced by the binding and/or hydrolysis of ATP molecules and substrates. In this mini-review, we briefly discuss recent progresses in the structural dynamics as revealed by molecular simulation studies at all-atom (AA), coarse-grained (CG), and quantum mechanics/molecular mechanics (QM/MM) levels.
Collapse
|
5
|
Dehghani-Ghahnaviyeh S, Kapoor K, Tajkhorshid E. Conformational changes in the nucleotide-binding domains of P-glycoprotein induced by ATP hydrolysis. FEBS Lett 2020; 595:735-749. [PMID: 33159693 DOI: 10.1002/1873-3468.13992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
P-glycoprotein (Pgp) is a member of the ABC transporter superfamily with high physiological importance. Pgp nucleotide-binding domains (NBDs) drive the transport cycle through ATP binding and hydrolysis. We use molecular dynamics simulations to investigate the ATP hydrolysis-induced conformational changes in NBDs. Five systems, including all possible ATP/ADP combinations in the NBDs and the APO system, are simulated. ATP/ADP exchange induces conformational changes mostly within the conserved signature motif of the NBDs, resulting in relative orientational changes in the NBDs. Nucleotide removal leads to additional orientational changes in the NBDs, allowing their dissociation. Furthermore, we capture putative hydrolysis-competent configurations in which the conserved glutamate in the Walker-B motif acts as a catalytic base capturing a water molecule likely initiating ATP hydrolysis.
Collapse
Affiliation(s)
- Sepehr Dehghani-Ghahnaviyeh
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - Karan Kapoor
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
6
|
Stockner T, Gradisch R, Schmitt L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett 2020; 594:3815-3838. [PMID: 33179257 PMCID: PMC7756269 DOI: 10.1002/1873-3468.13997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
ATP‐binding cassette (ABC) transporters are fascinating molecular machines that are capable of transporting a large variety of chemically diverse compounds. The energy required for translocation is derived from binding and hydrolysis of ATP. All ABC transporters share a basic architecture and are composed of two transmembrane domains and two nucleotide binding domains (NBDs). The latter harbor all conserved sequence motifs that hallmark the ABC transporter superfamily. The NBDs form the nucleotide binding sites (NBSs) in their interface. Transporters with two active NBSs are called canonical transporters, while ABC exporters from eukaryotic organisms, including humans, frequently have a degenerate NBS1 containing noncanonical residues that strongly impair ATP hydrolysis. Here, we summarize current knowledge on degenerate ABC transporters. By integrating structural information with biophysical and biochemical evidence of asymmetric function, we develop a model for the transport cycle of degenerate ABC transporters. We will elaborate on the unclear functional advantages of a degenerate NBS.
Collapse
Affiliation(s)
- Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Wang L, Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020; 696:108675. [PMID: 33197430 DOI: 10.1016/j.abb.2020.108675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) caused by overexpressed permeability-glycoprotein (P-gp) in cancer cells is the main barrier for the cure of cancers. P-gp can pump many chemotherapeutic drugs, which is a viable target to overcome P-gp-mediated MDR by efficient inhibitors of P-gp. However, limited understanding of the efflux mechanism by human P-gp hinders the development of efficient inhibitors. Herein, the transport of a P-gp inhibitor, verapamil, by human P-gp has been investigated using targeted molecular dynamics simulations and energetics analysis based on our previous research on the transport of a drug (doxorubicin). The energetics analysis identifies that the driving forces for the transport of verapamil are electrostatic repulsions contributed by the positively charged residues in the initial stage and then hydrophobic interactions contributed by the important residues in the later stage. This scenario is generally consistent with that in the transport of doxorubicin. However, the positively charged residues and the important residues for the transport of verapamil are incompletely consistent with the relative residues for the transport of doxorubicin. Moreover, the binding free energy contributions of the positively charged residues for the transport of verapamil are generally higher than them for the transport of doxorubicin, while the important residues constitute significantly different binding free energy compositions in the transports of the two substrates. Consequently, the pathway for the transport of verapamil is identified, which shares only two residues (F336 and M986) with the pathway of doxorubicin. This may imply the weak competitiveness of verapamil with doxorubicin in the substrate efflux. Taken together, this work provided new insights into the efflux mechanisms by human P-gp and would be beneficial in the design of potent P-gp inhibitors.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Feng Z, Liu D, Liu Z, Liang Y, Wang Y, Liu Q, Liu Z, Zang Z, Cui Y. Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA. J Microbiol Biotechnol 2020; 30:982-995. [PMID: 32347079 PMCID: PMC9728188 DOI: 10.4014/jmb.2003.03003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drugsensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Ziwen Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Qingpeng Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yudong Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,Corresponding author Phone/Fax: +459-6031177 E-mail:
| |
Collapse
|
9
|
Feng Z, Liu D, Wang L, Wang Y, Zang Z, Liu Z, Song B, Gu L, Fan Z, Yang S, Chen J, Cui Y. A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na +(Li +)/H + Transport. Front Microbiol 2020; 11:556. [PMID: 32390957 PMCID: PMC7190983 DOI: 10.3389/fmicb.2020.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
ATP-binding cassette transporters are ubiquitous in almost all organisms. The Escherichia coli genome is predicted to encode 69 ABC transporters. Eleven of the ABC transporters are presumed to be exporters, of which seven are possible drug export transporters. There has been minimal research on the function of YbhFSR, which is one of the putative drug resistance exporters. In this study, the ybhF gene of this transporter was characterized. Overexpression and knockout strains of ybhF were constructed. The ATPase activity of YbhF was studied using the malachite green assay, and the efflux abilities of knockout strains were demonstrated by using ethidium bromide (EB) as a substrate. The substrates of YbhFSR efflux, examined with the minimum inhibitory concentration (MIC), were determined to be tetracycline, oxytetracycline, chlortetracycline, doxycycline, EB, and Hoechst33342. Furthermore, tetracycline and EB efflux and accumulation experiments confirmed that the substrates of YbhFSR were tetracyclines and EB. The MIC assay and the fluorescence test results showed that tetracyclines are likely to be the major antibiotic substrate of YbhFSR. The existence of the signature NatA motif suggested that YbhFSR may also function as a Na+/H+ transporter. Overexpression of YbhF in E. coli KNabc lacking crucial Na+/H+ transporters conferred tolerance to NaCl, LiCl, and an alkaline pH. Together, the results showed that YbhFSR exhibited dual functions as a drug efflux pump and a Na+ (Li+)/H+ antiporter.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liwei Gu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
10
|
Abreu B, Lopes EF, Oliveira ASF, Soares CM. F508del disturbs the dynamics of the nucleotide binding domains of CFTR before and after ATP hydrolysis. Proteins 2019; 88:113-126. [PMID: 31298435 DOI: 10.1002/prot.25776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is an ion channel responsible for chloride transport in epithelia and it belongs to the class of ABC transporters. The deletion of phenylalanine 508 (F508del) in CFTR is the most common mutation responsible for cystic fibrosis. Little is known about the effect of the mutation in the isolated nucleotide binding domains (NBDs), on dimer dynamics, ATP hydrolysis and even on nucleotide binding. Using molecular dynamics simulations of the human CFTR NBD dimer, we showed that F508del increases, in the prehydrolysis state, the inter-motif distance in both ATP binding sites (ABP) when ATP is bound. Additionally, a decrease in the number of catalytically competent conformations was observed in the presence of F508del. We used the subtraction technique to study the first 300 ps after ATP hydrolysis in the catalytic competent site and found that the F508del dimer evidences lower conformational changes than the wild type. Using longer simulation times, the magnitude of the conformational changes in both forms increases. Nonetheless, the F508del dimer shows lower C-α RMS values in comparison to the wild-type, on the F508del loop, on the residues surrounding the catalytic site and the portion of NBD2 adjacent to ABP1. These results provide evidence that F508del interferes with the NBD dynamics before and after ATP hydrolysis. These findings shed a new light on the effect of F508del on NBD dynamics and reveal a novel mechanism for the influence of F508del on CFTR.
Collapse
Affiliation(s)
- Bárbara Abreu
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Emanuel F Lopes
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - A S F Oliveira
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal.,School of Biochemistry & Center for Computational Chemistry, University of Bristol, Bristol, UK
| | - Cláudio M Soares
- Protein Modelling Lab, ITQB-NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Immadisetty K, Hettige J, Moradi M. Lipid-Dependent Alternating Access Mechanism of a Bacterial Multidrug ABC Exporter. ACS CENTRAL SCIENCE 2019; 5:43-56. [PMID: 30693324 PMCID: PMC6346382 DOI: 10.1021/acscentsci.8b00480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/09/2023]
Abstract
By undergoing conformational changes, active membrane transporters alternate between an inward-facing (IF) and an outward-facing (OF) state to transport their substrates across cellular membrane. The conformational landscape of membrane transporters, however, could be influenced by their environment, and the dependence of the alternating access mechanism on the lipid composition has not been understood at the molecular level. We have performed an extensive set of microsecond-level all-atom molecular dynamics (MD) simulations on bacterial ATP binding cassette (ABC) exporter Sav1866 in six different phosphocholine (PC) and phosphoethanolamine (PE) lipid membrane environments. This study mainly focuses on the energetically downhill OF-to-IF conformational transition of Sav1866 upon the ATP hydrolysis. We observe that the transporter undergoes large-scale conformational changes in the PE environment, particularly in the POPE lipids, resulting in an IF-occluded conformation, a transition that does not occur when the transporter is embedded in any of the PC lipid bilayers. We propose that the PE lipids facilitate the closing of the protein on the periplasmic side due to their highly polar headgroups that mediate the interaction of the two transmembrane (TM) bundles by a network of lipid-lipid and lipid-protein hydrogen bonds. POPE lipids in particular facilitate the closure of periplasmic gate by promoting a hinge formation in TM helices and an interbundle salt bridge formation. This study explains how the alternating access mechanism and the flippase activity in ABC exporters could be lipid-dependent.
Collapse
|
12
|
Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C. Unexplored Nucleotide Binding Modes for the ABC Exporter MsbA. J Am Chem Soc 2018; 140:14112-14125. [PMID: 30289253 DOI: 10.1021/jacs.8b06739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter MsbA is an ATP-driven lipid-A flippase. It belongs to the ABC protein superfamily whose members are characterized by conserved motifs in their nucleotide binding domains (NBDs), which are responsible for ATP hydrolysis. Recently, it was found that MsbA could catalyze a reverse adenylate kinase (rAK)-like reaction in addition to ATP hydrolysis. Both reactions are connected and mediated by the same conserved NBD domains. Here, the structural foundations underlying the nucleotide binding to MsbA were therefore explored using a concerted approach based on conventional- and DNP-enhanced solid-state NMR, pulsed-EPR, and MD simulations. MsbA reconstituted into lipid bilayers was trapped in various catalytic states corresponding to intermediates of the coupled ATPase-rAK mechanism. The analysis of nucleotide-binding dependent chemical shift changes, and the detection of through-space contacts between bound nucleotides and MsbA within these states provides evidence for an additional nucleotide-binding site in close proximity to the Q-loop and the His-Switch. By replacing Mg2+ with Mn2+ and employing pulsed EPR spectroscopy, evidence is provided that this newly found nucleotide binding site does not interfere with the coordination of the required metal ion. Molecular dynamic (MD) simulations of nucleotide and metal binding required for the coupled ATPase-rAK mechanism have been used to corroborate these experimental findings and provide additional insight into nucleotide location, orientation, and possible binding modes.
Collapse
Affiliation(s)
- Hundeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Bárbara Abreu
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Dmitry Akhmetzyanov
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Andrea Lakatos-Karoly
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Thomas Prisner
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| |
Collapse
|
13
|
Göddeke H, Timachi MH, Hutter CAJ, Galazzo L, Seeger MA, Karttunen M, Bordignon E, Schäfer LV. Atomistic Mechanism of Large-Scale Conformational Transition in a Heterodimeric ABC Exporter. J Am Chem Soc 2018; 140:4543-4551. [DOI: 10.1021/jacs.7b12944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hendrik Göddeke
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - M. Hadi Timachi
- EPR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Cedric A. J. Hutter
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Laura Galazzo
- EPR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
| | - Enrica Bordignon
- EPR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Lars V. Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
14
|
Szöllősi D, Rose-Sperling D, Hellmich UA, Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:818-832. [PMID: 29097275 PMCID: PMC7610611 DOI: 10.1016/j.bbamem.2017.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. “This article is part of a Special Issue entitled: Beyond the Structure Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.”
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria
| | - Dania Rose-Sperling
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Stockner
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria.
| |
Collapse
|
15
|
Bountra K, Hagelueken G, Choudhury HG, Corradi V, El Omari K, Wagner A, Mathavan I, Zirah S, Yuan Wahlgren W, Tieleman DP, Schiemann O, Rebuffat S, Beis K. Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD. EMBO J 2017; 36:3062-3079. [PMID: 28864543 PMCID: PMC5641919 DOI: 10.15252/embj.201797278] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self‐immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli. Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward‐occluded and a new nucleotide‐bound state, high‐energy outward‐occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross‐linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi‐drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic‐level build‐up.
Collapse
Affiliation(s)
- Kiran Bountra
- Department of Life Sciences, Imperial College London, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Hassanul G Choudhury
- Department of Life Sciences, Imperial College London, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kamel El Omari
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK.,Diamond Light Source, Oxfordshire, UK
| | - Armin Wagner
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK.,Diamond Light Source, Oxfordshire, UK
| | - Indran Mathavan
- Department of Life Sciences, Imperial College London, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| | - Séverine Zirah
- Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Weixiao Yuan Wahlgren
- Department of Life Sciences, Imperial College London, London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK.,Chemistry & Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Sylvie Rebuffat
- Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, UK .,Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire, UK
| |
Collapse
|
16
|
Xu Y, Seelig A, Bernèche S. Unidirectional Transport Mechanism in an ATP Dependent Exporter. ACS CENTRAL SCIENCE 2017; 3:250-258. [PMID: 28386603 PMCID: PMC5364450 DOI: 10.1021/acscentsci.7b00068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 05/25/2023]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP binding and hydrolysis to move a large variety of compounds across biological membranes. P-glycoprotein, involved in multidrug resistance, is the most investigated eukaryotic family member. Although a large number of biochemical and structural approaches have provided important information, the conformational dynamics underlying the coupling between ATP binding/hydrolysis and allocrite transport remains elusive. To tackle this issue, we performed molecular dynamic simulations for different nucleotide occupancy states of Sav1866, a prokaryotic P-glycoprotein homologue. The simulations reveal an outward-closed conformation of the transmembrane domain that is stabilized by the binding of two ATP molecules. The hydrolysis of a single ATP leads the X-loop, a key motif of the ATP binding cassette, to interfere with the transmembrane domain and favor its outward-open conformation. Our findings provide a structural basis for the unidirectionality of transport in ABC exporters and suggest a ratio of one ATP hydrolyzed per transport cycle.
Collapse
Affiliation(s)
- Yanyan Xu
- SIB
Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Anna Seelig
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Simon Bernèche
- SIB
Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Pan C, Weng J, Wang W. Conformational Dynamics and Protein-Substrate Interaction of ABC Transporter BtuCD at the Occluded State Revealed by Molecular Dynamics Simulations. Biochemistry 2016; 55:6897-6907. [PMID: 27951660 DOI: 10.1021/acs.biochem.6b00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous in all three kingdoms of life and are implicated in many clinically relevant physiological processes. They couple the energy released by ATP hydrolysis to facilitate substrate translocation across cell membranes. The crystal structures of type II ABC importers have revealed their unique transmembrane domain architecture consisting of 10 transmembrane helices and their structurally conserved nucleotide-binding domains among all ABC transporters. However, molecular details of the interactions between the importers and their substrate remain largely elusive. Taking vitamin B12 importer BtuCD as an exemplar of type II importers, we investigated the dynamics of its occluded state and the detailed protein-substrate interactions using molecular dynamics simulation. Our trajectories show that the importer accommodates the substrate through a nonspecific binding mode as the substrate undergoes evident vertical and tilt motions inside the translocation cavity. Extensive hydrogen bond and hydrophobic interactions were observed between the substrate and the importer; however, most of these interactions are weak, with <38% occurrence. The presence of substrate leads to enlargement of the translocation cavity, especially at its cytoplasmic end, which may activate cytoplasmic regions and probably facilitate the transportation. The perturbations caused by periplasmic binding protein and nucleotides were also investigated. The study provides deeper insight into the translocation mechanism of BtuCD.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University , Shanghai, P. R. China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University , Shanghai, P. R. China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University , Shanghai, P. R. China
| |
Collapse
|
18
|
Furuta T, Sato Y, Sakurai M. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding. Biochemistry 2016; 55:6730-6738. [PMID: 27933796 DOI: 10.1021/acs.biochem.6b00947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.
Collapse
Affiliation(s)
- Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yukiko Sato
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
19
|
Pan C, Weng J, Wang W. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations. PLoS One 2016; 11:e0166980. [PMID: 27870912 PMCID: PMC5117765 DOI: 10.1371/journal.pone.0166980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is "transmitted" to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
20
|
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter that exports a huge range of compounds out of cells and is thus one of the key proteins in conferring multi-drug resistance in cancer. Understanding how it achieves such a broad specificity and the series of conformational changes that allow export to occur form major, on-going, research objectives around the world. Much of our knowledge to date has been derived from mutagenesis and assay data. However, in recent years, there has also been great progress in structural biology and although the structure of human P-gp has not yet been solved, there are now a handful of related structures on which homology models can be built to aid in the interpretation of the vast amount of experimental data that currently exists. Many models for P-gp have been built with this aim, but the situation is complicated by the apparent flexibility of the system and by the fact that although many potential templates exist, there is large variation in the conformational state in which they have been crystallized. In this review, we summarize how homology modelling has been used in the past, how models are typically selected and finally illustrate how MD simulations can be used as a means to give more confidence about models that have been generated via this approach.
Collapse
|
21
|
Prieß M, Schäfer LV. Release of Entropic Spring Reveals Conformational Coupling Mechanism in the ABC Transporter BtuCD-F. Biophys J 2016; 110:2407-2418. [PMID: 27276259 PMCID: PMC4906252 DOI: 10.1016/j.bpj.2016.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/14/2023] Open
Abstract
Substrate translocation by ATP-binding cassette (ABC) transporters involves coupling of ATP binding and hydrolysis in the nucleotide-binding domains (NBDs) to conformational changes in the transmembrane domains. We used molecular dynamics simulations to investigate the atomic-level mechanism of conformational coupling in the ABC transporter BtuCD-F, which imports vitamin B12 across the inner membrane of Escherichia coli. Our simulations show how an engineered disulfide bond across the NBD dimer interface reduces conformational fluctuations and hence configurational entropy. As a result, the disulfide bond is under substantial mechanical stress. Releasing this entropic spring, as is the case in the wild-type transporter, combined with analyzing the pairwise forces between individual residues, unravels the coupling mechanism. The identified pathways along which force is propagated from the NBDs via the coupling helix to the transmembrane domains are composed of highly conserved residues, underlining their functional relevance. This study not only reveals the details of conformational coupling in BtuCD-F, it also provides a promising approach to other long-range conformational couplings, e.g., in ABC exporters or other ATP-driven molecular machines.
Collapse
Affiliation(s)
- Marten Prieß
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany.
| |
Collapse
|
22
|
Liu H, Li D, Li Y, Hou T. Atomistic molecular dynamics simulations of ATP-binding cassette transporters. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Dan Li
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou China
| | - Tingjun Hou
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| |
Collapse
|
23
|
Gu RX, Corradi V, Singh G, Choudhury HG, Beis K, Tieleman DP. Conformational Changes of the Antibacterial Peptide ATP Binding Cassette Transporter McjD Revealed by Molecular Dynamics Simulations. Biochemistry 2015; 54:5989-98. [PMID: 26334959 DOI: 10.1021/acs.biochem.5b00753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ATP binding cassette (ABC) transporters form one of the largest protein superfamilies. They use the energy of ATP hydrolysis to transport chemically diverse ligands across membranes. An alternating access mechanism in which the transporter switches between inward- and outward-facing conformations has been proposed to describe the translocation process. One of the main open questions in this process is the degree of opening of the transporter at different stages of the transport cycle, as crystal structures and biochemical data have suggested a wide range of distances between nucleotide binding domains. Recently, the crystal structure of McjD, an antibacterial peptide ABC transporter from Escherichia coli, revealed a new occluded intermediate state of the transport cycle. The transmembrane domain is closed on both sides of the membrane, forming a cavity that can accommodate its ligand, MccJ25, a lasso peptide of 21 amino acids. In this work, we investigate the degree of opening of the transmembrane cavity required for ligand translocation. By means of steered molecular dynamics simulations, the ligand was pulled from the internal cavity to the extracellular side. This resulted in an outward-facing state. Comparison with existing outward-facing crystal structures shows a smaller degree of opening in the simulations, suggesting that the large conformational changes in some crystal structures may not be necessary even for a large substrate like MccJ25.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Gurpreet Singh
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hassanul G Choudhury
- Department of Life Sciences, Imperial College London , South Kensington, London SW7 2AZ, United Kingdom.,Membrane Protein Lab, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom.,Rutherford Appleton Laboratory , Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London , South Kensington, London SW7 2AZ, United Kingdom.,Membrane Protein Lab, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom.,Rutherford Appleton Laboratory , Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Ferreira RJ, Ferreira MJU, Dos Santos DJVA. Do drugs have access to the P-glycoprotein drug-binding pocket through gates? J Chem Theory Comput 2015; 11:4525-9. [PMID: 26574244 DOI: 10.1021/acs.jctc.5b00652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The P-glycoprotein efflux mechanism is being studied since its identification as a leading protagonist in multidrug resistance. Recently, it was suggested that drugs enter the drug-binding pocket (DBP) through gates located between the transmembrane domains. For both a substrate and a modulator, the potential of mean force curves along the reaction coordinate obtained with the WHAM approach were similar, with no activation energy required for crossing the gate. Moreover, drug transit from bulk water into the DBP was characterized as an overall free-energy downhill process.
Collapse
Affiliation(s)
- Ricardo J Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Daniel J V A Dos Santos
- REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto , Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
Conformational Motions and Functionally Key Residues for Vitamin B12 Transporter BtuCD-BtuF Revealed by Elastic Network Model with a Function-Related Internal Coordinate. Int J Mol Sci 2015; 16:17933-51. [PMID: 26247943 PMCID: PMC4581229 DOI: 10.3390/ijms160817933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/10/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
BtuCD-BtuF from Escherichia coli is a binding protein-dependent adenosine triphosphate (ATP)-binding cassette (ABC) transporter system that uses the energy of ATP hydrolysis to transmit vitamin B12 across cellular membranes. Experimental studies have showed that during the transport cycle, the transporter undergoes conformational transitions between the "inward-facing" and "outward-facing" states, which results in the open-closed motions of the cytoplasmic gate of the transport channel. The opening-closing of the channel gate play critical roles for the function of the transporter, which enables the substrate vitamin B12 to be translocated into the cell. In the present work, the extent of opening of the cytoplasmic gate was chosen as a function-related internal coordinate. Then the mean-square fluctuation of the internal coordinate, as well as the cross-correlation between the displacement of the internal coordinate and the movement of each residue in the protein, were calculated based on the normal mode analysis of the elastic network model to analyze the function-related motions encoded in the structure of the system. In addition, the key residues important for the functional motions of the transporter were predicted by using a perturbation method. In order to facilitate the calculations, the internal coordinate was introduced as one of the axes of the coordinate space and the conventional Cartesian coordinate space was transformed into the internal/Cartesian space with linear approximation. All the calculations were carried out in this internal/Cartesian space. Our method can successfully identify the functional motions and key residues for the transporter BtuCD-BtuF, which are well consistent with the experimental observations.
Collapse
|
26
|
Jones PM, George AM. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains. PLoS One 2015; 10:e0131505. [PMID: 26120849 PMCID: PMC4485892 DOI: 10.1371/journal.pone.0131505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
27
|
Su JG, Han XM, Zhang X, Hou YX, Zhu JZ, Wu YD. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model. J Biomol Struct Dyn 2015; 34:560-71. [DOI: 10.1080/07391102.2015.1044910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Subramanian N, Condic-Jurkic K, Mark AE, O'Mara ML. Identification of Possible Binding Sites for Morphine and Nicardipine on the Multidrug Transporter P-Glycoprotein Using Umbrella Sampling Techniques. J Chem Inf Model 2015; 55:1202-17. [PMID: 25938863 DOI: 10.1021/ci5007382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The multidrug transporter P-glycoprotein (P-gp) is central to the development of multidrug resistance in cancer. While residues essential for transport and binding have been identified, the location, composition, and specificity of potential drug binding sites are uncertain. Here molecular dynamics simulations are used to calculate the free energy profile for the binding of morphine and nicardipine to P-gp. We show that morphine and nicardipine primarily interact with key residues implicated in binding and transport from mutational studies, binding at different but overlapping sites within the transmembrane pore. Their permeation pathways were distinct but involved overlapping sets of residues. The results indicate that the binding location and permeation pathways of morphine and nicardipine are not well separated and cannot be considered as unique. This has important implications for our understanding of substrate uptake and transport by P-gp. Our results are independent of the choice of starting structure and consistent with a range of experimental studies.
Collapse
Affiliation(s)
- Nandhitha Subramanian
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Karmen Condic-Jurkic
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E Mark
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Megan L O'Mara
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Wang Z, Liao JL. Probing Structural Determinants of ATP-Binding Cassette Exporter Conformational Transition Using Coarse-Grained Molecular Dynamics. J Phys Chem B 2015; 119:1295-301. [DOI: 10.1021/jp509178k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zi Wang
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, People’s Republic of China, 230026
| | - Jie-Lou Liao
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, People’s Republic of China, 230026
| |
Collapse
|
30
|
Prajapati R, Sangamwar AT. Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2882-98. [DOI: 10.1016/j.bbamem.2014.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
|
31
|
Yang Z, Niu X, Zhang H, Wang S, Zhao X, Huang X. Conformational changes in MetNI: steered molecular dynamic studies of the methionine ABC transporter with and without substrates. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.910599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Ferreira RJ, Ferreira MJU, dos Santos DJVA. Reversing cancer multidrug resistance: insights into the efflux by ABC transports fromin silicostudies. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Maria-José U. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J. V. A. dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
- REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
33
|
Chang SY, Liu FF, Dong XY, Sun Y. Molecular insight into conformational transmission of human P-glycoprotein. J Chem Phys 2014; 139:225102. [PMID: 24329094 DOI: 10.1063/1.4832740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.
Collapse
Affiliation(s)
- Shan-Yan Chang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fu-Feng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
34
|
Furuta T, Yamaguchi T, Kato H, Sakurai M. Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations. Biochemistry 2014; 53:4261-72. [PMID: 24937232 DOI: 10.1021/bi500255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ATP-binding cassette (ABC) transporters are constructed from some common structural units: the highly conserved nucleotide-binding domains (NBDs), which work as a nucleotide-dependent engine for driving substrate transport, the diverse transmembrane domains (TMDs), which create the translocation pathway, and the coupling helices (CHs), which are located at the NBD-TMD interface. Although the CHs are believed to be essential for NBD-TMD communication, their roles remain unclear. In this study, we performed enzyme assays and molecular dynamics (MD) simulations of the ABC transporter MsbA and two MsbA mutants in which the amino acid residues of one of the CHs were mutated to alanines: (i) wild type (Wt), (ii) CH1 mutant (Mt1), and (iii) CH2 mutant (Mt2). The experiments show that the CH2 mutation decreases the ATPase activity (kcat) compared with that of the Wt (a decrease of 32%), and a nearly equal degree of decrease in the ATP binding affinity (Km) was observed for both Mt1 and Mt2. The MD simulations successfully accounted for several structural and dynamical origins for these experimental observations. In addition, on the basis of collective motion and morphing analyses, we propose that the reverse-rotational motions and noddinglike motions between the NBDs and TMDs are indispensable for the conformational transition between the inward- and outward-facing conformations. In particular, CH2 is significantly important for the occurrence of the noddinglike motion. These findings provide important insights into the structure-function relationship of ABC transporters.
Collapse
Affiliation(s)
- Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
35
|
O’Mara ML, Mark AE. Structural characterization of two metastable ATP-bound states of P-glycoprotein. PLoS One 2014; 9:e91916. [PMID: 24632881 PMCID: PMC3954865 DOI: 10.1371/journal.pone.0091916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/18/2014] [Indexed: 12/30/2022] Open
Abstract
ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg(2+) with each NBD indicates that the coordination of ATP and Mg(2+) differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations.
Collapse
Affiliation(s)
- Megan L. O’Mara
- School of Chemistry and Molecular Biosciences (SCMB), The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Mathematics and Physics (SMP), The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences (SCMB), The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
- The Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Zhang J, Sun T, Liang L, Wu T, Wang Q. Drug promiscuity of P-glycoprotein and its mechanism of interaction with paclitaxel and doxorubicin. SOFT MATTER 2014; 10:438-445. [PMID: 24652302 DOI: 10.1039/c3sm52499j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
P-glycoprotein (P-gp) pumps a broad range of structurally diverse anti-cancer drugs out of cancer cells. Therefore, multi-drug resistance (MDR) in chemotherapy closely correlates with P-gp. However, how this single transport system recognizes different substrates remains unclear. In this study, we attempt to uncover the mechanism of substrate promiscuity of P-gp by atomistic molecular dynamics simulations. Results indicate that different drugs like paclitaxel and doxorubicin approach the putative binding site of P-gp, and the inner residues are found to be important in this process. An obstacle-overcoming process was observed, illustrating that the inner residues are flexible. Interaction energy calculations suggest that the inner residues possess high affinity toward substrates. The cavity of adaptability to accommodate different drugs would help explain why P-gp has so many different substrates.
Collapse
Affiliation(s)
- Junqiao Zhang
- Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| | | | | | | | | |
Collapse
|
37
|
A Microscopic View of the Mechanisms of Active Transport Across the Cellular Membrane. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63378-1.00004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci U S A 2013; 110:18916-21. [PMID: 24191018 DOI: 10.1073/pnas.1313202110] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During their transport cycle, ATP-binding cassette (ABC) transporters undergo large-scale conformational changes between inward- and outward-facing states. Using an approach based on designing system-specific reaction coordinates and using nonequilibrium work relations, we have performed extensive all-atom molecular dynamics simulations in the presence of explicit membrane/solvent to sample a large number of mechanistically distinct pathways for the conformational transition of MsbA, a bacterial ABC exporter whose structure has been solved in multiple functional states. The computational approach developed here is based on (i) extensive exploration of system-specific biasing protocols (e.g., using collective variables designed based on available low-resolution crystal structures) and (ii) using nonequilibrium work relations for comparing the relevance of the transition pathways. The most relevant transition pathway identified using this approach involves several distinct stages reflecting the complex nature of the structural changes associated with the function of the protein. The opening of the cytoplasmic gate during the outward- to inward-facing transition of apo MsbA is found to be disfavored when the periplasmic gate is open and facilitated by a twisting motion of the nucleotide-binding domains that involves a dramatic change in their relative orientation. These results highlight the cooperativity between the transmembrane and the nucleotide-binding domains in the conformational transition of ABC exporters. The approach introduced here provides a framework to study large-scale conformational changes of other membrane transporters whose computational investigation at an atomic resolution may not be currently feasible using conventional methods.
Collapse
|
39
|
|
40
|
Ma J, Biggin PC. Substrate versus inhibitor dynamics of P-glycoprotein. Proteins 2013; 81:1653-68. [PMID: 23670856 DOI: 10.1002/prot.24324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/24/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022]
Abstract
By far the most studied multidrug resistance protein is P-glycoprotein. Despite recent structural data, key questions about its function remain. P-glycoprotein (P-gp) is flexible and undergoes large conformational changes as part of its function and in this respect, details not only of the export cycle, but also the recognition stage are currently lacking. Given the flexibility, molecular dynamics (MD) simulations provide an ideal tool to examine this aspect in detail. We have performed MD simulations to examine the behaviour of P-gp. In agreement with previous reports, we found that P-gp undergoes large conformational changes which tended to result in the nucleotide-binding domains coming closer together. In all simulations, the approach of the NBDs was asymmetrical in agreement with previous observations for other ABC transporter proteins. To validate the simulations, we make extensive comparison to previous cross-linking data. Our results show very good agreement with the available data. We then went on to compare the influence of inhibitor compounds bound with simulations of a substrate (daunorubicin) bound. Our results suggest that inhibitors may work by keeping the NBDs apart, thus preventing ATP-hydrolysis. On the other hand, repeat simulations of daunorubicin (substrate) in one particular binding pose suggest that the approach of the NBDs is not impaired and that the structure would be still be competent to perform ATP hydrolysis, thus providing a model for inhibition or substrate transport. Finally we compare the latter to earlier QSAR data to provide a model for the first part of substrate transport within P-gp.
Collapse
Affiliation(s)
- Jerome Ma
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | | |
Collapse
|
41
|
Wen PC, Verhalen B, Wilkens S, Mchaourab HS, Tajkhorshid E. On the origin of large flexibility of P-glycoprotein in the inward-facing state. J Biol Chem 2013; 288:19211-20. [PMID: 23658020 PMCID: PMC3696692 DOI: 10.1074/jbc.m113.450114] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (Pgp) is one of the most biomedically relevant transporters in the ATP binding
cassette (ABC) superfamily due to its involvement in developing multidrug resistance in cancer
cells. Employing molecular dynamics simulations and double electron-electron resonance spectroscopy,
we have investigated the structural dynamics of membrane-bound Pgp in the inward-facing state and
found that Pgp adopts an unexpectedly wide range of conformations, highlighted by the degree of
separation between the two nucleotide-binding domains (NBDs). The distance between the two NBDs in
the equilibrium simulations covers a range of at least 20 Å, including, both, more open and
more closed NBD configurations than the crystal structure. The double electron-electron resonance
measurements on spin-labeled Pgp mutants also show wide distributions covering both longer and
shorter distances than those observed in the crystal structure. Based on structural and sequence
analyses, we propose that the transmembrane domains of Pgp might be more flexible than other
structurally known ABC exporters. The structural flexibility of Pgp demonstrated here is not only in
close agreement with, but also helps rationalize, the reported high NBD fluctuations in several ABC
exporters and possibly represents a fundamental difference in the transport mechanism between ABC
exporters and ABC importers. In addition, during the simulations we have captured partial entrance
of a lipid molecule from the bilayer into the lumen of Pgp, reaching the putative drug binding site.
The location of the protruding lipid suggests a putative pathway for direct drug recruitment from
the membrane.
Collapse
Affiliation(s)
- Po-Chao Wen
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illnois 61801, USA
| | | | | | | | | |
Collapse
|
42
|
In silico model for P-glycoprotein substrate prediction: insights from molecular dynamics and in vitro studies. J Comput Aided Mol Des 2013; 27:347-63. [DOI: 10.1007/s10822-013-9650-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
|
43
|
Shaikh S, Li J, Enkavi G, Wen PC, Huang Z, Tajkhorshid E. Visualizing functional motions of membrane transporters with molecular dynamics simulations. Biochemistry 2013; 52:569-87. [PMID: 23298176 PMCID: PMC3560430 DOI: 10.1021/bi301086x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.
Collapse
Affiliation(s)
- Saher
A. Shaikh
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jing Li
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Giray Enkavi
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhijian Huang
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 2012; 12:52. [PMID: 22906146 PMCID: PMC3533511 DOI: 10.1186/1472-6750-12-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022] Open
Abstract
Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.
Collapse
Affiliation(s)
- Lan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
George AM, Jones PM. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 109:95-107. [PMID: 22765920 DOI: 10.1016/j.pbiomolbio.2012.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
Abstract
ABC transporters constitute one of the largest protein families across the kingdoms of archaea, eubacteria and eukarya. They couple ATP hydrolysis to vectorial translocation of diverse substrates across membranes. The ABC transporter architecture comprises two transmembrane domains and two cytosolic ATP-binding cassettes. During 2002-2012, nine prokaryotic ABC transporter structures and two eukaryotic structures have been solved to medium resolution. Despite a wealth of biochemical, biophysical, and structural data, fundamental questions remain regarding the coupling of ATP hydrolysis to unidirectional substrate translocation, and the mechanistic suite of steps involved. The mechanics of the ATP cassette dimer is defined most popularly by the 'Switch Model', which proposes that hydrolysis in each protomer is sequential, and that as the sites are freed of nucleotide, the protomers lose contact across a large solvent-filled gap of 20-30 Å; as captured in several X-ray solved structures. Our 'Constant Contact' model for the operational mechanics of ATP binding and hydrolysis in the ATP-binding cassettes is derived from the 'alternating sites' model, proposed in 1995, and which requires an intrinsic asymmetry in the ATP sites, but does not require the partner protomers to lose contact. Thus one of the most debated issues regarding the function of ABC transporters is whether the cooperative mechanics of ATP hydrolysis requires the ATP cassettes to separate or remain in constant contact and this dilemma is discussed at length in this review.
Collapse
Affiliation(s)
- Anthony M George
- School of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| | | |
Collapse
|
46
|
Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A 2012; 109:10832-6. [PMID: 22711831 DOI: 10.1073/pnas.1204067109] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The study of membrane proteins remains a challenging task, and approaches to unravel their dynamics are scarce. Here, we applied hydrogen/deuterium exchange (HDX) coupled to mass spectrometry to probe the motions of a bacterial multidrug ATP-binding cassette (ABC) transporter, BmrA, in the inward-facing (resting state) and outward-facing (ATP-bound) conformations. Trypsin digestion and global or local HDX support the transition between inward- and outward-facing conformations during the catalytic cycle of BmrA. However, in the resting state, peptides from the two intracellular domains, especially ICD2, show a much faster HDX than in the closed state. This shows that these two subdomains are very flexible in this conformation. Additionally, molecular dynamics simulations suggest a large fluctuation of the Cα positions from ICD2 residues in the inward-facing conformation of a related transporter, MsbA. These results highlight the unexpected flexibility of ABC exporters in the resting state and underline the power of HDX coupled to mass spectrometry to explore conformational changes and dynamics of large membrane proteins.
Collapse
|
47
|
O'Mara ML, Mark AE. The Effect of Environment on the Structure of a Membrane Protein: P-Glycoprotein under Physiological Conditions. J Chem Theory Comput 2012; 8:3964-76. [PMID: 26593033 DOI: 10.1021/ct300254y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stability of the crystal structure of the multidrug transporter P-glycoprotein proposed by Aller et al. (PDBid 3G5U ) has been examined under different environmental conditions using molecular dynamics. We show that in the presence of the detergent cholate, the structure of P-glycoprotein solved at pH 7.5 is stable. However, when incorporated into a cholesterol-enriched POPC membrane in the presence of 150 mM NaCl, the structure rapidly deforms. Only when the simulation conditions closely matched the experimental conditions under which P-glycoprotein is transport active was a stable conformation obtained. Specifically, the presence of Mg(2+), which bound to distinct sites in the nucleotide binding domains (NBDs), and the double protonation of the catalytic histidines (His583 and His1228) and His149 were required. While the structure obtained in a membrane environment under these conditions is very similar to the crystal structure of Aller et al., there are several key differences. The NBDs are in direct contact, reminiscent of the open state of MalK. The angle between the transmembrane domains is also increased, resulting in an outward motion of the intracellular loops. Notably, the structures obtained from the simulations provide a better match to a range of experimental cross-linking data than does the original 3G5U-a crystal structure. This work highlights the effect small changes in environmental conditions can have of the conformation of a membrane protein and the importance of representing the experimental conditions appropriately in modeling studies.
Collapse
Affiliation(s)
- Megan L O'Mara
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia.,Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
48
|
Ward AB, Guvench O, Hills RD. Coarse grain lipid-protein molecular interactions and diffusion with MsbA flippase. Proteins 2012; 80:2178-90. [DOI: 10.1002/prot.24108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 12/27/2022]
|
49
|
Ferreira RJ, Ferreira MJU, dos Santos DJVA. Insights on P-Glycoprotein’s Efflux Mechanism Obtained by Molecular Dynamics Simulations. J Chem Theory Comput 2012; 8:1853-64. [DOI: 10.1021/ct300083m] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for
Medicine and Pharmaceutical
Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av.
Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria-José U. Ferreira
- Research Institute for
Medicine and Pharmaceutical
Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av.
Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Daniel J. V. A. dos Santos
- Research Institute for
Medicine and Pharmaceutical
Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av.
Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
50
|
Jones PM, George AM. Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter. J Phys Chem A 2012; 116:3004-13. [PMID: 22369471 DOI: 10.1021/jp211139s] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABC transporters couple ATP hydrolysis to movement of substrates across cell membranes. They comprise two transmembrane domains and two cytosolic nucleotide-binding domains forming two active sites that hydrolyze ATP cooperatively. The mechanism of ATP hydrolysis is controversial and the structural dynamic basis of its allosteric control unknown. Here we report molecular dynamics simulations of the ATP/apo and ATP/ADP states of the bacterial ABC exporter Sav1866, in which the cytoplasmic region of the protein was simulated in explicit water for 150 ns. In the simulation of the ATP/apo state, we observed, for the first time, conformers of the active site with the canonical geometry for an in-line nucleophilic attack on the ATP γ-phosphate. The conserved glutamate immediately downstream of the Walker B motif is the catalytic base, forming a dyad with the H-loop histidine, whereas the Q-loop glutamine has an organizing role. Each D-loop provides a coordinating residue of the attacking water, and comparison with the simulation of the ATP/ADP state suggests that via their flexibility, the D-loops modulate formation of the hydrolysis-competent state. A global switch involving a coupling helix delineates the signal transmission route by which allosteric control of ATP hydrolysis in ABC transporters is mediated.
Collapse
Affiliation(s)
- Peter M Jones
- School of Medical and Molecular Biosciences, and iThree Institute, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| | | |
Collapse
|