1
|
Tai L, Yin G, Sun F, Zhu Y. Cryo-electron microscopy reveals the structure of the nuclear pore complex. J Mol Biol 2023; 435:168051. [PMID: 36933820 DOI: 10.1016/j.jmb.2023.168051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Yin
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510005, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
3
|
Abstract
Despite the central role of Nuclear Pore Complexes (NPCs) as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm, their large size and dynamic nature have impeded a full structural and functional elucidation. Here, we have determined a subnanometer precision structure for the entire 552-protein yeast NPC by satisfying diverse data including stoichiometry, a cryo-electron tomography map, and chemical cross-links. The structure reveals the NPC’s functional elements in unprecedented detail. The NPC is built of sturdy diagonal columns to which are attached connector cables, imbuing both strength and flexibility, while tying together all other elements of the NPC, including membrane-interacting regions and RNA processing platforms. Inwardly-directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized in distinct functional units. Taken together, this integrative structure allows us to rationalize the architecture, transport mechanism, and evolutionary origins of the NPC.
Collapse
|
4
|
Molecular Architecture of the Major Membrane Ring Component of the Nuclear Pore Complex. Structure 2017; 25:434-445. [PMID: 28162953 DOI: 10.1016/j.str.2017.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
The membrane ring that equatorially circumscribes the nuclear pore complex (NPC) in the perinuclear lumen of the nuclear envelope is composed largely of Pom152 in yeast and its ortholog Nup210 (or Gp210) in vertebrates. Here, we have used a combination of negative-stain electron microscopy, nuclear magnetic resonance, and small-angle X-ray scattering methods to determine an integrative structure of the ∼120 kDa luminal domain of Pom152. Our structural analysis reveals that the luminal domain is formed by a flexible string-of-pearls arrangement of nine repetitive cadherin-like Ig-like domains, indicating an evolutionary connection between NPCs and the cell adhesion machinery. The 16 copies of Pom152 known to be present in the yeast NPC are long enough to form the observed membrane ring, suggesting how interactions between Pom152 molecules help establish and maintain the NPC architecture.
Collapse
|
5
|
Fernandez-Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R, Gagnon M, Chemmama IE, Wang J, Nudelman I, Zhang W, Williams R, Rice WJ, Stokes DL, Zenklusen D, Chait BT, Sali A, Rout MP. Structure and Function of the Nuclear Pore Complex Cytoplasmic mRNA Export Platform. Cell 2016; 167:1215-1228.e25. [PMID: 27839866 DOI: 10.1016/j.cell.2016.10.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022]
Abstract
The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.
Collapse
Affiliation(s)
| | - Seung Joong Kim
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Paula Upla
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Riccardo Pellarin
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Structural Bioinformatics Unit, Institut Pasteur, CNRS UMR 3528, 75015 Paris, France
| | - Michael Gagnon
- Département de Biochimie et Médecine Moléculaire, University of Montréal, Montréal, QC H3C3J7, Canada
| | - Ilan E Chemmama
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Ilona Nudelman
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Rosemary Williams
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - William J Rice
- Simons Electron Microscopy Center at New York Structural Biology Center, New York, NY 10027, USA
| | - David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel Zenklusen
- Département de Biochimie et Médecine Moléculaire, University of Montréal, Montréal, QC H3C3J7, Canada
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | - Andrej Sali
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 2013; 13:687-99. [PMID: 23090414 DOI: 10.1038/nrm3461] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear pore complexes (NPCs) are multiprotein aqueous channels that penetrate the nuclear envelope connecting the nucleus and the cytoplasm. NPCs consist of multiple copies of roughly 30 different proteins known as nucleoporins (NUPs). Due to their essential role in controlling nucleocytoplasmic transport, NPCs have traditionally been considered as structures of ubiquitous composition. The overall structure of the NPC is indeed conserved in all cells, but new evidence suggests that the protein composition of NPCs varies among cell types and tissues. Moreover, mutations in various nucleoporins result in tissue-specific diseases. These findings point towards a heterogeneity in NPC composition and function. This unexpected heterogeneity suggests that cells use a combination of different nucleoporins to assemble NPCs with distinct properties and specialized functions.
Collapse
|