1
|
Terse VL, Gosavi S. The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease. Biophys J 2020; 120:504-516. [PMID: 33359834 PMCID: PMC7837137 DOI: 10.1016/j.bpj.2020.11.2277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
2
|
Kimura R, Aumpuchin P, Hamaue S, Shimomura T, Kikuchi T. Analyses of the folding sites of irregular β-trefoil fold proteins through sequence-based techniques and Gō-model simulations. BMC Mol Cell Biol 2020; 21:28. [PMID: 32295515 PMCID: PMC7477875 DOI: 10.1186/s12860-020-00271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background The details of the folding mechanisms have not yet been fully understood for many proteins, and it is believed that the information on the folding mechanism of a protein is encoded in its amino acid sequence. β-trefoil proteins are known to have the same 3D scaffold, namely, a three-fold symmetric scaffold, despite the proteins’ low sequence identity among superfamilies. In this study, we extract an initial folding unit from the amino acid sequences of irregular β-trefoil proteins by constructing an average distance map (ADM) and utilizing inter-residue average distance statistics to determine the relative contact frequencies for residue pairs in terms of F values. We compare our sequence-based prediction results with the packing between hydrophobic residues in native 3D structures and a Gō-model simulation. Results The ADM and F-value analyses predict that the N-terminal and C-terminal regions are compact and that the hydrophobic residues at the central region can be regarded as an interaction center with other residues. These results correspond well to those of the Gō-model simulations. Moreover, our results indicate that the irregular parts in the β-trefoil proteins do not hinder the protein formation. Conserved hydrophobic residues on the β5 strand are always the interaction center of packing between the conserved hydrophobic residues in both regular and irregular β-trefoil proteins. Conclusions We revealed that the β5 strand plays an important role in β-trefoil protein structure construction. The sequence-based methods used in this study can extract the protein folding information from only amino acid sequence data, and well corresponded to 3D structure-based Gō-model simulation and available experimental results.
Collapse
Affiliation(s)
- Risako Kimura
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Panyavut Aumpuchin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Shoya Hamaue
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takumi Shimomura
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
3
|
Aumpuchin P, Hamaue S, Kikuchi T. Prediction of the initial folding sites and the entire folding processes for Ig-like beta-sandwich proteins. Proteins 2019; 88:740-758. [PMID: 31833097 DOI: 10.1002/prot.25862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 11/12/2022]
Abstract
Describing the whole story of protein folding is currently the main enigmatic problem in molecular bioinformatics study. Protein folding mechanisms have been intensively investigated with experimental as well as simulation techniques. Since a protein folds into its specific 3D structure from a unique amino acid sequence, it is interesting to extract as much information as possible from the amino acid sequence of a protein. Analyses based on inter-residue average distance statistics and a coarse-grained Gō-model simulation were conducted on Ig and FN3 domains of a titin protein to decode the folding mechanisms from their sequence data and native structure data, respectively. The central region of all domains was predicted to be an initial folding unit, that is, stable in an early state of folding. This common feature coincides well with the experimental results and underscores the significance of the β-sandwich proteins' common structure, namely, the key strands for folding and the Greek-key motif, which is located in the central region. We confirmed that our sequence-based techniques were able to predict the initial folding event just next to the denatured state and that a 3D-based Gō-model simulation can be used to investigate the whole process of protein folding.
Collapse
Affiliation(s)
- Panyavut Aumpuchin
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shoya Hamaue
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
4
|
Terse VL, Gosavi S. The Sensitivity of Computational Protein Folding to Contact Map Perturbations: The Case of Ubiquitin Folding and Function. J Phys Chem B 2018; 122:11497-11507. [PMID: 30234303 DOI: 10.1021/acs.jpcb.8b07409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin is a small model protein, commonly used in protein folding experiments and simulations. We simulated ubiquitin using a well-tested structure-based model coarse-grained to a Cα level (Cα-SBM) and found that the simulated folding route did not agree with the experimentally observed one. Simulating the Cα-SBM with a cutoff contact map, instead of a screened contact map, switched the folding route with the new route matching the experimental route. Thus, the simulated folding of ubiquitin is sensitive to contact map definition. The screened contact map, which is used in folding simulations because it captures protein folding cooperativity, removes contacts in which the atoms in contact are occluded by a third atom and is less sensitive to the value of the cutoff distance in well-packed regions of the protein. In sparsely packed regions, the larger cutoff distance creates bridging contacts between atoms which are separated by voids. Such contacts do not seem to affect the folding of most proteins, including those of the ubiquitin fold. However, the surface of ubiquitin has several protruding functional side chains which naturally create bridging contacts. Together, our results show that subtle structural features of a protein that may not be apparent by mere observation can be identified by comparing folding simulations of SBMs in which these features are differently encoded. When such structural features are preserved for functional reasons, differences in computational folding can be leveraged to identify functional features. Notably, such features are accessible to a gradation of SBMs even in commonly studied proteins such as ubiquitin.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| |
Collapse
|
5
|
Yadahalli S, Gosavi S. Packing energetics determine the folding routes of the RNase-H proteins. Phys Chem Chem Phys 2017; 19:9164-9173. [DOI: 10.1039/c6cp08940b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The RNase-H proteins show a diverse range of folding routes with structurally distinct folding nuclei.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bangalore-560065
- India
- Manipal University
| | - Shachi Gosavi
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bangalore-560065
- India
| |
Collapse
|
6
|
Yadahalli S, Gosavi S. Functionally Relevant Specific Packing Can Determine Protein Folding Routes. J Mol Biol 2015; 428:509-21. [PMID: 26724535 DOI: 10.1016/j.jmb.2015.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
Functional residues can modulate the folding mechanisms of proteins. In some proteins, mutations to such residues can radically change the primary folding route. Is it possible then to learn more about the functional regions of a protein by investigating just its choice of folding route? The folding and the function of the protein Escherichia coli ribonuclease H (ecoRNase-H) have been extensively studied and its folding route is known to near-residue resolution. Here, we computationally study the folding of ecoRNase-H using molecular dynamics simulations of structure-based models of increasing complexity. The differences between a model that correctly predicts the experimentally determined folding route and a simpler model that does not can be attributed to a set of six aromatic residues clustered together in a region of the protein called CORE. This clustering, which we term "specific" packing, drives CORE to fold early and determines the folding route. Both the residues involved in specific packing and their packing are largely conserved across E. coli-like RNase-Hs from diverse species. Residue conservation is usually implicated in function. Here, the identified residues either are known to bind substrate in ecoRNase-H or pack against the substrate in the homologous human RNase-H where a substrate-bound crystal structure exists. Thus, the folding mechanism of ecoRNase-H is a byproduct of functional demands upon its sequence. Using our observations on specific packing, we suggest mutations to an engineered HIV RNase-H to make its function better. Our results show that understanding folding route choice in proteins can provide unexpected insights into their function.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; Manipal University, Madhav Nagar, Manipal 576104, India; Bioinformatics Institute (A*STAR), Singapore 138671, Singapore
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
7
|
Sugita M, Matsuoka M, Kikuchi T. Topological and sequence information predict that foldons organize a partially overlapped and hierarchical structure. Proteins 2015; 83:1900-13. [PMID: 26248725 DOI: 10.1002/prot.24874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 11/09/2022]
Abstract
It has been suggested that proteins have substructures, called foldons, which can cooperatively fold into the native structure. However, several prior investigations define foldons in various ways, citing different foldon characteristics, thereby making the concept of a foldon ambiguous. In this study, we perform a Gō model simulation and analyze the characteristics of substructures that cooperatively fold into the native-like structure. Although some results do not agree well with the experimental evidence due to the simplicity of our coarse-grained model, our results strongly suggest that cooperatively folding units sometimes organize a partially overlapped and hierarchical structure. This view makes us easy to interpret some different proposal about the foldon as a difference of the hierarchical structure. On the basis of this finding, we present a new method to assign foldons and their hierarchy, using structural and sequence information. The results show that the foldons assigned by our method correspond to the intermediate structures identified by some experimental techniques. The new method makes it easy to predict whether a protein folds sequentially into the native structure or whether some foldons fold into the native structure in parallel.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masanari Matsuoka
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
8
|
Matsuoka M, Sugita M, Kikuchi T. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures. BMC Res Notes 2014; 7:654. [PMID: 25231773 PMCID: PMC4180342 DOI: 10.1186/1756-0500-7-654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. RESULTS It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. CONCLUSIONS The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.
Collapse
Affiliation(s)
| | | | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan.
| |
Collapse
|
9
|
Sugita M, Kikuchi T. Analyses of the folding properties of ferredoxin-like fold proteins by means of a coarse-grained Gō model: relationship between the free energy profiles and folding cores. Proteins 2013; 82:954-65. [PMID: 24214655 DOI: 10.1002/prot.24469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/30/2013] [Accepted: 10/29/2013] [Indexed: 11/07/2022]
Abstract
The folding mechanisms of proteins with multi-state transitions, the role of the intermediate states, and the precise mechanism how each transition occurs are significant on-going research issues. In this study, we investigate ferredoxin-like fold proteins which have a simple topology and multi-state transitions. We analyze the folding processes by means of a coarse-grained Gō model. We are able to reproduce the differences in the folding mechanisms between U1A, which has a high-free-energy intermediate state, and ADA2h and S6, which fold into the native structure through two-state transitions. The folding pathways of U1A, ADA2h, S6, and the S6 circular permutant, S6_p54-55, are reproduced and compared with experimental observations. We show that the ferredoxin-like fold contains two common regions consisting folding cores as predicted in other studies and that U1A produces an intermediate state due to the distinct cooperative folding of each core. However, because one of the cores of S6 loses its cooperativity and the two cores of ADA2h are tightly coupled, these proteins fold into the native structure through a two-state mechanism.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|