1
|
Bessler L, Kaur N, Vogt LM, Flemmich L, Siebenaller C, Winz ML, Tuorto F, Micura R, Ehrenhofer-Murray A, Helm M. Functional integration of a semi-synthetic azido-queuosine derivative into translation and a tRNA modification circuit. Nucleic Acids Res 2022; 50:10785-10800. [PMID: 36169220 PMCID: PMC9561289 DOI: 10.1093/nar/gkac822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Substitution of the queuine nucleobase precursor preQ1 by an azide-containing derivative (azido-propyl-preQ1) led to incorporation of this clickable chemical entity into tRNA via transglycosylation in vitro as well as in vivo in Escherichia coli, Schizosaccharomyces pombe and human cells. The resulting semi-synthetic RNA modification, here termed Q-L1, was present in tRNAs on actively translating ribosomes, indicating functional integration into aminoacylation and recruitment to the ribosome. The azide moiety of Q-L1 facilitates analytics via click conjugation of a fluorescent dye, or of biotin for affinity purification. Combining the latter with RNAseq showed that TGT maintained its native tRNA substrate specificity in S. pombe cells. The semi-synthetic tRNA modification Q-L1 was also functional in tRNA maturation, in effectively replacing the natural queuosine in its stimulation of further modification of tRNAAsp with 5-methylcytosine at position 38 by the tRNA methyltransferase Dnmt2 in S. pombe. This is the first demonstrated in vivo integration of a synthetic moiety into an RNA modification circuit, where one RNA modification stimulates another. In summary, the scarcity of queuosinylation sites in cellular RNA, makes our synthetic q/Q system a 'minimally invasive' system for placement of a non-natural, clickable nucleobase within the total cellular RNA.
Collapse
Affiliation(s)
- Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Navpreet Kaur
- Institute of Biology, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Laurin Flemmich
- Department of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Carmen Siebenaller
- Department of Chemistry – Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Marie-Luise Winz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ronald Micura
- Department of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
2
|
Sebastiani M, Behrens C, Dörr S, Gerber HD, Benazza R, Hernandez-Alba O, Cianférani S, Klebe G, Heine A, Reuter K. Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase. ACS Chem Biol 2022; 17:2229-2247. [PMID: 35815944 DOI: 10.1021/acschembio.2c00368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In tRNAAsp, tRNAAsn, tRNATyr, and tRNAHis of most bacteria and eukaryotes, the anticodon wobble position may be occupied by the modified nucleoside queuosine, which affects the speed and the accuracy of translation. Since eukaryotes are not able to synthesize queuosine de novo, they have to salvage queuine (the queuosine base) as a micronutrient from food and/or the gut microbiome. The heterodimeric Zn2+ containing enzyme tRNA-guanine transglycosylase (TGT) catalyzes the insertion of queuine into the above-named tRNAs in exchange for the genetically encoded guanine. This enzyme has attracted medical interest since it was shown to be potentially useful for the treatment of multiple sclerosis. In addition, TGT inactivation via gene knockout leads to the suppressed cell proliferation and migration of certain breast cancer cells, which may render this enzyme a potential target for the design of compounds supporting breast cancer therapy. As a prerequisite to fully exploit the medical potential of eukaryotic TGT, we have determined and analyzed a number of crystal structures of the functional murine TGT with and without bound queuine. In addition, we have investigated the importance of two residues of its non-catalytic subunit on dimer stability and determined the Michaelis-Menten parameters of murine TGT with respect to tRNA and several natural and artificial nucleobase substrates. Ultimately, on the basis of available TGT crystal structures, we provide an entirely conclusive reaction mechanism for this enzyme, which in detail explains why the TGT-catalyzed insertion of some nucleobases into tRNA occurs reversibly while that of others is irreversible.
Collapse
Affiliation(s)
- Maurice Sebastiani
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Christina Behrens
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Stefanie Dörr
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Hans-Dieter Gerber
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France.,Infrastructure Nationale de Protéomique ProFI─FR2048, 67087 Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France.,Infrastructure Nationale de Protéomique ProFI─FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France.,Infrastructure Nationale de Protéomique ProFI─FR2048, 67087 Strasbourg, France
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| |
Collapse
|
3
|
Nguyen A, Gemmecker G, Softley CA, Movsisyan LD, Pfaffeneder T, Heine A, Reuter K, Diederich F, Sattler M, Klebe G. 19F-NMR Unveils the Ligand-Induced Conformation of a Catalytically Inactive Twisted Homodimer of tRNA-Guanine Transglycosylase. ACS Chem Biol 2022; 17:1745-1755. [PMID: 35763700 DOI: 10.1021/acschembio.2c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the structural arrangements of protein oligomers can support the design of ligands that interfere with their function in order to develop new therapeutic concepts for disease treatment. Recent crystallographic studies have elucidated a novel twisted and functionally inactive form of the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative target in the fight against shigellosis. Active-site ligands have been identified that stimulate the rearrangement of one monomeric subunit by 130° against the other one to form an inactive twisted homodimer state. To assess whether the crystallographic observations also reflect the conformation in solution and rule out effects from crystal packing, we performed 19F-NMR spectroscopy with the introduction of 5-fluorotryptophans at four sites in TGT. The inhibitor-induced conformation of TGT in solution was assessed based on 19F-NMR chemical shift perturbations. We investigated the effect of C(4) substituted lin-benzoguanine ligands and identified a correlation between dynamic protein rearrangements and ligand-binding features in the corresponding crystal structures. These involve the destabilization of a helix next to the active site and the integrity of a flexible loop-helix motif. Ligands that either completely lack an attached C(4) substituent or use it to stabilize the geometry of the functionally competent dimer state do not indicate the presence of the twisted dimer form in the NMR spectra. The perturbation of crucial structural motifs in the inhibitors correlates with an increasing formation of the inactive twisted dimer state, suggesting these ligands are able to shift a conformational equilibrium from active C2-symmetric to inactive twisted dimer conformations. These findings suggest a novel concept for the design of drug candidates for further development.
Collapse
Affiliation(s)
- Andreas Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| | - Gerd Gemmecker
- Biomolecular NMR, Bavarian NMR Center, Technical University of Munich, Lichtenbergstraße 4, Garching D-85747, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Charlotte A Softley
- Biomolecular NMR, Bavarian NMR Center, Technical University of Munich, Lichtenbergstraße 4, Garching D-85747, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Levon D Movsisyan
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich CH-8093, Switzerland
| | - Toni Pfaffeneder
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich CH-8093, Switzerland
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| | - François Diederich
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich CH-8093, Switzerland
| | - Michael Sattler
- Biomolecular NMR, Bavarian NMR Center, Technical University of Munich, Lichtenbergstraße 4, Garching D-85747, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, Marburg D-35032, Germany
| |
Collapse
|
4
|
Sievers K, Welp L, Urlaub H, Ficner R. Structural and functional insights into human tRNA guanine transgylcosylase. RNA Biol 2021; 18:382-396. [PMID: 34241577 DOI: 10.1080/15476286.2021.1950980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded βEβF-sheet of the QTRT2 subunit as an additional RNA-binding motif.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (Mbexc), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Nguyen D, Xie X, Jakobi S, Terwesten F, Metz A, Nguyen TXP, Palchykov VA, Heine A, Reuter K, Klebe G. Targeting a Cryptic Pocket in a Protein-Protein Contact by Disulfide-Induced Rupture of a Homodimeric Interface. ACS Chem Biol 2021; 16:1090-1098. [PMID: 34081441 DOI: 10.1021/acschembio.1c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interference with protein-protein interfaces represents an attractive as well as challenging option for therapeutic intervention and drug design. The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, is only functional as a homodimer. Although we previously produced monomeric variants by site-directed mutagenesis, we only crystallized the functional dimer, simply because upon crystallization the local protein concentration increases and favors formation of the dimer interface, which represents an optimal and highly stable packing of the protein in the solid state. Unfortunately, this prevents access to structural information about the interface geometry in its monomeric state and complicates the development of modulators that can interfere with and prevent dimer formation. Here, we report on a cysteine-containing protein variant in which, under oxidizing conditions, a disulfide linkage is formed. This reinforces a novel packing geometry of the enzyme. In this captured quasi-monomeric state, the monomer units arrange in a completely different way and, thus, expose a loop-helix motif, originally embedded into the old interface, now to the surface. The motif adopts a geometry incompatible with the original dimer formation. Via the soaking of fragments into the crystals, we identified several hits accommodating a cryptic binding site next to the loop-helix motif and modulated its structural features. Our study demonstrates the druggability of the interface by breaking up the homodimeric protein using an introduced disulfide cross-link. By rational concepts, we increased the potency of these fragments to a level where we confirmed their binding by NMR to a nondisulfide-linked TGT variant. The idea of intermediately introducing a disulfide linkage may serve as a general concept of how to transform a homodimer interface into a quasi-monomeric state and give access to essential structural and design information.
Collapse
Affiliation(s)
- Dzung Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Stephan Jakobi
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Felix Terwesten
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - T. X. Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Vitalii A. Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, 72 Gagarina Avenue, Dnipro 49010, Ukraine
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
6
|
Nguyen A, Nguyen D, Phong Nguyen TX, Sebastiani M, Dörr S, Hernandez-Alba O, Debaene F, Cianférani S, Heine A, Klebe G, Reuter K. The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. ACS Chem Biol 2020; 15:3021-3029. [PMID: 33166460 DOI: 10.1021/acschembio.0c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacterial tRNA-guanine transglycosylase (Tgt) is involved in the biosynthesis of the modified tRNA nucleoside queuosine present in the anticodon wobble position of tRNAs specific for aspartate, asparagine, histidine, and tyrosine. Inactivation of the tgt gene leads to decreased pathogenicity of Shigella bacteria. Therefore, Tgt constitutes a putative target for Shigellosis drug therapy. Since it is only active as homodimer, interference with dimer-interface formation may, in addition to active-site inhibition, provide further means to disable this protein. A cluster of four aromatic residues seems important to stabilize the homodimer. We mutated residues of this aromatic cluster and analyzed each mutated variant with respect to the dimer and thermal stability or enzyme activity by applying native mass spectrometry, a thermal shift assay, enzyme kinetics, and X-ray crystallography. Our structural studies indicate a strong influence of pH on the homodimer stability. Apparently, protonation of a histidine within the aromatic cluster supports the collapse of an essential structural motif within the dimer interface at slightly acidic pH.
Collapse
Affiliation(s)
- Andreas Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Dzung Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Tran Xuan Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Maurice Sebastiani
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Stefanie Dörr
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France
| | - François Debaene
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 F-Strasbourg, France
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany
| |
Collapse
|
7
|
Ehrmann FR, Kalim J, Pfaffeneder T, Bernet B, Hohn C, Schäfer E, Botzanowski T, Cianférani S, Heine A, Reuter K, Diederich F, Klebe G. Austausch der Proteinkontaktflächen in der homodimeren tRNA-Guanin-Transglycosylase: ein Weg der funktionellen Regulation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Frederik Rainer Ehrmann
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| | - Jorna Kalim
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Bruno Bernet
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Christoph Hohn
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Elisabeth Schäfer
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg Frankreich
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg Frankreich
| | - Andreas Heine
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Deutschland
| |
Collapse
|
8
|
Ehrmann FR, Kalim J, Pfaffeneder T, Bernet B, Hohn C, Schäfer E, Botzanowski T, Cianférani S, Heine A, Reuter K, Diederich F, Klebe G. Swapping Interface Contacts in the Homodimeric tRNA-Guanine Transglycosylase: An Option for Functional Regulation. Angew Chem Int Ed Engl 2018; 57:10085-10090. [DOI: 10.1002/anie.201804627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Frederik Rainer Ehrmann
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Jorna Kalim
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Toni Pfaffeneder
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bruno Bernet
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Christoph Hohn
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Elisabeth Schäfer
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique; Université de Strasbourg; CNRS, IPHC UMR 7178; 67000 Strasbourg France
| | - Andreas Heine
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie; Philipps-Universität Marburg; Marbacher Weg 6 35032 Marburg Germany
| |
Collapse
|
9
|
Behrens C, Biela I, Petiot-Bécard S, Botzanowski T, Cianférani S, Sager CP, Klebe G, Heine A, Reuter K. Homodimer Architecture of QTRT2, the Noncatalytic Subunit of the Eukaryotic tRNA-Guanine Transglycosylase. Biochemistry 2018; 57:3953-3965. [DOI: 10.1021/acs.biochem.8b00294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christina Behrens
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Inna Biela
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Stéphanie Petiot-Bécard
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christoph P. Sager
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| |
Collapse
|
10
|
Ehrmann FR, Stojko J, Metz A, Debaene F, Barandun LJ, Heine A, Diederich F, Cianférani S, Reuter K, Klebe G. Soaking suggests "alternative facts": Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition. PLoS One 2017; 12:e0175723. [PMID: 28419165 PMCID: PMC5395182 DOI: 10.1371/journal.pone.0175723] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023] Open
Abstract
For the efficient pathogenesis of Shigella, the causative agent of bacillary dysentery, full functionality of tRNA-guanine transglycosylase (TGT) is mandatory. TGT performs post-transcriptional modifications of tRNAs in the anticodon loop taking impact on virulence development. This suggests TGT as a putative target for selective anti-shigellosis drug therapy. Since bacterial TGT is only functional as homodimer, its activity can be inhibited either by blocking its active site or by preventing dimerization. Recently, we discovered that in some crystal structures obtained by soaking the full conformational adaptation most likely induced in solution upon ligand binding is not displayed. Thus, soaked structures may be misleading and suggest irrelevant binding modes. Accordingly, we re-investigated these complexes by co-crystallization. The obtained structures revealed large conformational rearrangements not visible in the soaked complexes. They result from spatial perturbations in the ribose-34/phosphate-35 recognition pocket and, consequently, an extended loop-helix motif required to prevent access of water molecules into the dimer interface loses its geometric integrity. Thermodynamic profiles of ligand binding in solution indicate favorable entropic contributions to complex formation when large conformational adaptations in the dimer interface are involved. Native MS titration experiments reveal the extent to which the homodimer is destabilized in the presence of each inhibitor. Unexpectedly, one ligand causes a complete rearrangement of subunit packing within the homodimer, never observed in any other TGT crystal structure before. Likely, this novel twisted dimer is catalytically inactive and, therefore, suggests that stabilizing this non-productive subunit arrangement may be used as a further strategy for TGT inhibition.
Collapse
Affiliation(s)
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - François Debaene
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Cross-Talk between Dnmt2-Dependent tRNA Methylation and Queuosine Modification. Biomolecules 2017; 7:biom7010014. [PMID: 28208632 PMCID: PMC5372726 DOI: 10.3390/biom7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the Dnmt2 family of methyltransferases have yielded a number of unexpected discoveries. The first surprise came more than ten years ago when it was realized that, rather than being DNA methyltransferases, Dnmt2 enzymes actually are transfer RNA (tRNA) methyltransferases for cytosine-5 methylation, foremost C38 (m5C38) of tRNAAsp. The second unanticipated finding was our recent discovery of a nutritional regulation of Dnmt2 in the fission yeast Schizosaccharomyces pombe. Significantly, the presence of the nucleotide queuosine in tRNAAsp strongly stimulates Dnmt2 activity both in vivo and in vitro in S. pombe. Queuine, the respective base, is a hypermodified guanine analog that is synthesized from guanosine-5’-triphosphate (GTP) by bacteria. Interestingly, most eukaryotes have queuosine in their tRNA. However, they cannot synthesize it themselves, but rather salvage it from food or from gut microbes. The queuine obtained from these sources comes from the breakdown of tRNAs, where the queuine ultimately was synthesized by bacteria. Queuine thus has been termed a micronutrient. This review summarizes the current knowledge of Dnmt2 methylation and queuosine modification with respect to translation as well as the organismal consequences of the absence of these modifications. Models for the functional cooperation between these modifications and its wider implications are discussed.
Collapse
|
12
|
Wang X, Sun X, Kuang G, Ågren H, Tu Y. A theoretical study on the molecular determinants of the affibody protein Z(Aβ3) bound to an amyloid β peptide. Phys Chem Chem Phys 2016; 17:16886-93. [PMID: 26060853 DOI: 10.1039/c5cp00615e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amyloid beta (Aβ) peptides are small cleavage products of the amyloid precursor protein. Aggregates of Aβ peptides are thought to be linked with Alzheimer's and other neurodegenerative diseases. Strategies aimed at inhibiting amyloid formation and promoting Aβ clearance have been proposed and investigated in in vitro experiments and in vivo therapies. A recent study indicated that a novel affibody protein ZAβ3, which binds to an Aβ40 monomer with a binding affinity of 17 nM, is able to prevent the aggregation of Aβ40. However, little is known about the energetic contribution of each residue in ZAβ3 to the formation of the (ZAβ3)2:Aβ complex. To address this issue, we carried out unbiased molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area calculations. Through the per-residue decomposition scheme, we identified that the van der Waals interactions between the hydrophobic residues of (ZAβ3)2 and those at the exterior and interior faces of Aβ are the main contributors to the binding of (ZAβ3)2 to Aβ. Computational alanine scanning identified 5 hot spots, all residing in the binding interface and contributing to the binding of (ZAβ3)2 to Aβ through the hydrophobic effect. In addition, the amide hydrogen bonds in the 4-strand β-sheet and the π-π stacking were also analyzed. Overall, our study provides a theoretical basis for future experimental improvement of the ZAβ3 peptide binding to Aβ.
Collapse
Affiliation(s)
- Xu Wang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Jakobi S, Nguyen PTX, Debaene F, Cianférani S, Reuter K, Klebe G. What Glues a Homodimer Together: Systematic Analysis of the Stabilizing Effect of an Aromatic Hot Spot in the Protein-Protein Interface of the tRNA-Modifying Enzyme Tgt. ACS Chem Biol 2015; 10:1897-907. [PMID: 25951081 DOI: 10.1021/acschembio.5b00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shigella bacteria constitute the causative agent of bacillary dysentery, an acute inflammatory disease causing the death of more than one million humans per year. A null mutation in the tgt gene encoding the tRNA-modifying enzyme tRNA-guanine transglycosylase (Tgt) was found to drastically decrease the pathogenicity of Shigella bacteria, suggesting the use of Tgt as putative target for selective antibiotics. The enzyme is only functionally active as a homodimer; thus, interference with the formation of its protein-protein interface is an attractive opportunity for therapeutic intervention. To better understand the driving forces responsible for the assembly, stability, and formation of the homodimer, we studied the properties of the residues that establish the dimer interface in detail. We performed site-directed mutagenesis and controlled shifts in the monomer/dimer equilibrium ratio in solution in a concentration-dependent manner by native mass spectrometry and used crystal structure analysis to elucidate the geometrical modulations resulting from mutational variations. The wild-type enzyme exhibits nearly exclusive dimer geometry. A patch of four aromatic amino acids, embedded into a ring of hydrophobic residues and further stabilized by a network of H-bonds, is essential for the stability of the dimer's contact. Accordingly, any perturbance in the constitution of this aromatic patch by nonaromatic residues reduces dimer stability significantly, with some of these exchanges resulting in a nearly exclusively monomeric state. Apart from the aromatic hot spot, the interface comprises an extended loop-helix motif that exhibits remarkable flexibility. In the destabilized mutated variants, the loop-helix motif adopts deviating conformations in the interface region, and a number of water molecules, penetrating into the interface, are observed.
Collapse
Affiliation(s)
- Stephan Jakobi
- Institut
für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Phong T. X. Nguyen
- Institut
für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - François Debaene
- BioOrganic
Mass Spectrometry Laboratory (LSMBO), Université de Strasbourg, IPHC,
25 rue Becquerel, 67087 Strasbourg, France
- CNRS, UMR7178, 67087 Strasbourg, France
| | - Sarah Cianférani
- BioOrganic
Mass Spectrometry Laboratory (LSMBO), Université de Strasbourg, IPHC,
25 rue Becquerel, 67087 Strasbourg, France
- CNRS, UMR7178, 67087 Strasbourg, France
| | - Klaus Reuter
- Institut
für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Institut
für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| |
Collapse
|
14
|
Paudyal S, Alfonso-Prieto M, Carnevale V, Redhu SK, Klein ML, Nicholson AW. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB. Proteins 2015; 83:459-72. [PMID: 25546632 PMCID: PMC4329070 DOI: 10.1002/prot.24751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/06/2023]
Abstract
Ribonuclease III is a conserved bacterial endonuclease that cleaves double-stranded(ds) structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control that in turn confer global post-transcriptional regulation. The Escherichia coli macrodomain protein YmdB directly interacts with RNase III, and an increase in YmdB amount in vivo correlates with a reduction in RNase III activity. Here, a computational-based structural analysis was performed to identify atomic-level features of the YmdB-RNase III interaction. The docking of monomeric E. coli YmdB with a homology model of the E. coli RNase III homodimer yields a complex that exhibits an interaction of the conserved YmdB residue R40 with specific RNase III residues at the subunit interface. Surface Plasmon Resonance (SPR) analysis provided a KD of 61 nM for the complex, corresponding to a binding free energy (ΔG) of −9.9 kcal/mol. YmdB R40 and RNase III D128 were identified by in silico alanine mutagenesis as thermodynamically important interacting partners. Consistent with the prediction, the YmdB R40A mutation causes a 16-fold increase in KD (ΔΔG = +1.8 kcal/mol), as measured by SPR, and the D128A mutation in both RNase III subunits (D128A/D128′A) causes an 83-fold increase in KD (ΔΔG = +2.7 kcal/mol). The greater effect of the D128A/D128′A mutation may reflect an altered RNase III secondary structure, as revealed by CD spectroscopy, which also may explain the significant reduction in catalytic activity in vitro. The features of the modeled complex relevant to potential RNase III regulatory mechanisms are discussed. Proteins 2015; 83:459–472. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samridhdi Paudyal
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122
| | | | | | | | | | | |
Collapse
|