1
|
Rosignoli S, Lustrino E, Di Silverio I, Paiardini A. Making Use of Averaging Methods in MODELLER for Protein Structure Prediction. Int J Mol Sci 2024; 25:1731. [PMID: 38339009 PMCID: PMC10855553 DOI: 10.3390/ijms25031731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent advances in protein structure prediction, driven by AlphaFold 2 and machine learning, demonstrate proficiency in static structures but encounter challenges in capturing essential dynamic features crucial for understanding biological function. In this context, homology-based modeling emerges as a cost-effective and computationally efficient alternative. The MODELLER (version 10.5, accessed on 30 November 2023) algorithm can be harnessed for this purpose since it computes intermediate models during simulated annealing, enabling the exploration of attainable configurational states and energies while minimizing its objective function. There have been a few attempts to date to improve the models generated by its algorithm, and in particular, there is no literature regarding the implementation of an averaging procedure involving the intermediate models in the MODELLER algorithm. In this study, we examined MODELLER's output using 225 target-template pairs, extracting the best representatives of intermediate models. Applying an averaging procedure to the selected intermediate structures based on statistical potentials, we aimed to determine: (1) whether averaging improves the quality of structural models during the building phase; (2) if ranking by statistical potentials reliably selects the best models, leading to improved final model quality; (3) whether using a single template versus multiple templates affects the averaging approach; (4) whether the "ensemble" nature of the MODELLER building phase can be harnessed to capture low-energy conformations in holo structures modeling. Our findings indicate that while improvements typically fall short of a few decimal points in the model evaluation metric, a notable fraction of configurations exhibit slightly higher similarity to the native structure than MODELLER's proposed final model. The averaging-building procedure proves particularly beneficial in (1) regions of low sequence identity between the target and template(s), the most challenging aspect of homology modeling; (2) holo protein conformations generation, an area in which MODELLER and related tools usually fall short of the expected performance.
Collapse
Affiliation(s)
| | | | | | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.R.); (E.L.); (I.D.S.)
| |
Collapse
|
2
|
Long S, Tian P. A simple neural network implementation of generalized solvation free energy for assessment of protein structural models. RSC Adv 2019; 9:36227-36233. [PMID: 35540566 PMCID: PMC9074945 DOI: 10.1039/c9ra05168f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022] Open
Abstract
Rapid and accurate assessment of protein structural models is essential for protein structure prediction and design. Great progress has been made in this regard, especially by recent application of "knowledge-based" potentials. Various machine learning based protein structural model quality assessment methods are also quite successful. However, performance of traditional "physics-based" models has not been as effective. Based on our analysis of the fundamental computational limitation behind unsatisfactory performance of "physics-based" models, we propose a generalized solvation free energy (GSFE) framework, which is intrinsically flexible for multi-scale treatments and is amenable for machine learning implementation. Finally, we implemented a simple example of backbone-based residue level GSFE with neural network, which was found to have competitive performance when compared with highly complex latest "knowledge-based" atomic potentials in distinguishing native structures from decoys.
Collapse
Affiliation(s)
- Shiyang Long
- School of Chemistry, Jilin University Changchun China
| | - Pu Tian
- School of Life Science and School of Artificial Intelligence, Jilin University 2699 Qianjin Street Changchun China 130012
| |
Collapse
|
3
|
Yu Z, Yao Y, Deng H, Yi M. ANDIS: an atomic angle- and distance-dependent statistical potential for protein structure quality assessment. BMC Bioinformatics 2019; 20:299. [PMID: 31159742 PMCID: PMC6547486 DOI: 10.1186/s12859-019-2898-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/13/2019] [Indexed: 01/05/2023] Open
Abstract
Background The knowledge-based statistical potential has been widely used in protein structure modeling and model quality assessment. They are commonly evaluated based on their abilities of native recognition as well as decoy discrimination. However, these two aspects are found to be mutually exclusive in many statistical potentials. Results We developed an atomic ANgle- and DIStance-dependent (ANDIS) statistical potential for protein structure quality assessment with distance cutoff being a tunable parameter. When distance cutoff is ≤9.0 Å, “effective atomic interaction” is employed to enhance the ability of native recognition. For a distance cutoff of ≥10 Å, the distance-dependent atom-pair potential with random-walk reference state is combined to strengthen the ability of decoy discrimination. Benchmark tests on 632 structural decoy sets from diverse sources demonstrate that ANDIS outperforms other state-of-the-art potentials in both native recognition and decoy discrimination. Conclusions Distance cutoff is a crucial parameter for distance-dependent statistical potentials. A lower distance cutoff is better for native recognition, while a higher one is favorable for decoy discrimination. The ANDIS potential is freely available as a standalone application at http://qbp.hzau.edu.cn/ANDIS/. Electronic supplementary material The online version of this article (10.1186/s12859-019-2898-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongwang Yu
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuangen Yao
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyou Deng
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Applied Physics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Yi
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Applied Physics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Pfeiffenberger E, Bates PA. Predicting improved protein conformations with a temporal deep recurrent neural network. PLoS One 2018; 13:e0202652. [PMID: 30180164 PMCID: PMC6122789 DOI: 10.1371/journal.pone.0202652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/07/2018] [Indexed: 02/03/2023] Open
Abstract
Accurate protein structure prediction from amino acid sequence is still an unsolved problem. The most reliable methods centre on template based modelling. However, the accuracy of these models entirely depends on the availability of experimentally resolved homologous template structures. In order to generate more accurate models, extensive physics based molecular dynamics (MD) refinement simulations are performed to sample many different conformations to find improved conformational states. In this study, we propose a deep recurrent network model, called DeepTrajectory, that is able to identify these improved conformational states, with high precision, from a variety of different MD based sampling protocols. The proposed model learns the temporal patterns of features computed from MD trajectory data in order to classify whether each recorded simulation snapshot is an improved quality conformational state, decreased quality conformational state or whether there is no perceivable change in state with respect to the starting conformation. The model was trained and tested on 904 trajectories from 42 different protein systems with a cumulative number of more than 1.7 million snapshots. We show that our model outperforms other state of the art machine-learning algorithms that do not consider temporal dependencies. To our knowledge, DeepTrajectory is the first implementation of a time-dependent deep-learning protocol that is re-trainable and able to adapt to any new MD based sampling procedure, thereby demonstrating how a neural network can be used to learn the latter part of the protein folding funnel.
Collapse
Affiliation(s)
- Erik Pfeiffenberger
- Biomolecular Modelling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|
5
|
de Oliveira SHP, Law EC, Shi J, Deane CM. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction. Bioinformatics 2018; 34:1132-1140. [PMID: 29136098 PMCID: PMC6030820 DOI: 10.1093/bioinformatics/btx722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/22/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023] Open
Abstract
Motivation Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. Results We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Availability and implementation Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. Contact saulo.deoliveira@dtc.ox.ac.uk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Eleanor C Law
- Department of Statistics, University of Oxford, Oxford, UK
| | - Jiye Shi
- Department of Informatics, UCB Pharma, Slough, UK
- Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
6
|
Yao Y, Gui R, Liu Q, Yi M, Deng H. Diverse effects of distance cutoff and residue interval on the performance of distance-dependent atom-pair potential in protein structure prediction. BMC Bioinformatics 2017; 18:542. [PMID: 29221443 PMCID: PMC5723101 DOI: 10.1186/s12859-017-1983-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As one of the most successful knowledge-based energy functions, the distance-dependent atom-pair potential is widely used in all aspects of protein structure prediction, including conformational search, model refinement, and model assessment. During the last two decades, great efforts have been made to improve the reference state of the potential, while other factors that also strongly affect the performance of the potential have been relatively less investigated. RESULTS Based on different distance cutoffs (from 5 to 22 Å) and residue intervals (from 0 to 15) as well as six different reference states, we constructed a series of distance-dependent atom-pair potentials and tested them on several groups of structural decoy sets collected from diverse sources. A comprehensive investigation has been performed to clarify the effects of distance cutoff and residue interval on the potential's performance. Our results provide a new perspective as well as a practical guidance for optimizing distance-dependent statistical potentials. CONCLUSIONS The optimal distance cutoff and residue interval are highly related with the reference state that the potential is based on, the measurements of the potential's performance, and the decoy sets that the potential is applied to. The performance of distance-dependent statistical potential can be significantly improved when the best statistical parameters for the specific application environment are adopted.
Collapse
Affiliation(s)
- Yuangen Yao
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rong Gui
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Quan Liu
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ming Yi
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haiyou Deng
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Applied Physics, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
7
|
Lam SD, Das S, Sillitoe I, Orengo C. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallogr D Struct Biol 2017; 73:628-640. [PMID: 28777078 PMCID: PMC5571743 DOI: 10.1107/s2059798317008920] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Computational modelling of proteins has been a major catalyst in structural biology. Bioinformatics groups have exploited the repositories of known structures to predict high-quality structural models with high efficiency at low cost. This article provides an overview of comparative modelling, reviews recent developments and describes resources dedicated to large-scale comparative modelling of genome sequences. The value of subclustering protein domain superfamilies to guide the template-selection process is investigated. Some recent cases in which structural modelling has aided experimental work to determine very large macromolecular complexes are also cited.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
- School of Biosciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Sayoni Das
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| | - Christine Orengo
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| |
Collapse
|
8
|
Olechnovič K, Venclovas Č. VoroMQA: Assessment of protein structure quality using interatomic contact areas. Proteins 2017; 85:1131-1145. [DOI: 10.1002/prot.25278] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Kliment Olechnovič
- Institute of Biotechnology, Vilnius University; Saulėtekio 7 LT-10257 Vilnius Lithuania
- Faculty of Mathematics and Informatics; Vilnius University; Naugarduko 24 LT-03225 Vilnius Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University; Saulėtekio 7 LT-10257 Vilnius Lithuania
| |
Collapse
|
9
|
|