1
|
Huang K, Yan X, Li Z, Liu F, Cui K, Liu Q. Construction and Identification of a Breast Bioreactor for Human-Derived Hypoglycemic Protein Amylin. Life (Basel) 2024; 14:191. [PMID: 38398700 PMCID: PMC10890372 DOI: 10.3390/life14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The mammary gland of mammals can generate numerous bioactive proteins. To express the human amylin protein in the mammary glands of domestic animals, we engineered a transgenic mammary gland bioreactor. For this study, we produced transgenic mice through prokaryotic microinjection. RT-PCR, qPCR, and Western blotting confirmed the presence of transgenes in the mice. The ELISA assay indicated an amylin yield of approximately 1.44 μg/mL in the mice milk. Further research revealed that consuming milk containing amylin resulted in a slight, but insignificant enhancement in food consumption, blood sugar equilibrium, and glucose tolerance. The influence of amylin-fortified milk on the abundance of fecal strains in mice was examined, and a significant difference in the quantity of strains needed for fatty acid synthesis and metabolism was discovered. The amylin protein gathered from humans is safe to consume, as no harmful effects were detected in the mice. Our study examined the production of human amylin using a new safety strategy that could potentially alleviate diabetic symptoms in the future through oral administration of milk containing amylin.
Collapse
Affiliation(s)
- Kongwei Huang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.Y.); (K.C.)
| | - Xiuying Yan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.Y.); (K.C.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (Z.L.); (F.L.)
| | - Fuhang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (Z.L.); (F.L.)
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.Y.); (K.C.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.Y.); (K.C.)
| |
Collapse
|
2
|
Smaoui MR, Yahyaoui H. Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain. Sci Rep 2021; 11:9166. [PMID: 33911163 PMCID: PMC8080587 DOI: 10.1038/s41598-021-88696-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
The interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design efforts explores attempts at affecting the binding potential between the two proteins to limit the activity of the virus and disease progression. In this work, we analyze the stability of the spike protein under all possible single-point mutations in the RBD and computationally explore mutations that can affect the binding with the ACE2 enzyme. We unravel the mutation landscape of the receptor region and assess the toxicity potential of single and multi-point mutations, generating insights for future vaccine efforts on mutations that might further stabilize the spike protein and increase its infectivity. We developed a tool, called SpikeMutator, to construct full atomic protein structures of the mutant spike proteins and shared a database of 3800 single-point mutant structures. We analyzed the recent 65,000 reported spike sequences across the globe and observed the emergence of stable multi-point mutant structures. Using the landscape, we searched through 7.5 million possible 2-point mutation combinations and report that the (R355D K424E) mutation produces one of the strongest spike proteins that therapeutic efforts should investigate for the sake of developing effective vaccines.
Collapse
Affiliation(s)
| | - Hamdi Yahyaoui
- Computer Science Department, Kuwait University, Kuwait, State of Kuwait
| |
Collapse
|
3
|
Martínez-Navarro I, Díaz-Molina R, Pulido-Capiz A, Mas-Oliva J, Luna-Reyes I, Rodríguez-Velázquez E, Rivero IA, Ramos-Ibarra MA, Alatorre-Meda M, García-González V. Lipid Modulation in the Formation of β-Sheet Structures. Implications for De Novo Design of Human Islet Amyloid Polypeptide and the Impact on β-Cell Homeostasis. Biomolecules 2020; 10:biom10091201. [PMID: 32824918 PMCID: PMC7563882 DOI: 10.3390/biom10091201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) corresponds to a 37-residue hormone present in insulin granules that maintains a high propensity to form β-sheet structures during co-secretion with insulin. Previously, employing a biomimetic approach, we proposed a panel of optimized IAPP sequences with only one residue substitution that shows the capability to reduce amyloidogenesis. Taking into account that specific membrane lipids have been considered as a key factor in the induction of cytotoxicity, in this study, following the same design strategy, we characterize the effect of a series of lipids upon several polypeptide domains that show the highest aggregation propensity. The characterization of the C-native segment of hIAPP (residues F23-Y37), together with novel variants F23R and I26A allowed us to demonstrate an effect upon the formation of β-sheet structures. Our results suggest that zwitterionic phospholipids promote adsorption of the C-native segments at the lipid-interface and β-sheet formation with the exception of the F23R variant. Moreover, the presence of cholesterol did not modify this behavior, and the β-sheet structural transitions were not registered when the N-terminal domain of hIAPP (K1-S20) was characterized. Considering that insulin granules are enriched in phosphatidylserine (PS), the property of lipid vesicles containing negatively charged lipids was also evaluated. We found that these types of lipids promote β-sheet conformational transitions in both the C-native segment and the new variants. Furthermore, these PS/peptides arrangements are internalized in Langerhans islet β-cells, localized in the endoplasmic reticulum, and trigger critical pathways such as unfolded protein response (UPR), affecting insulin secretion. Since this phenomenon was associated with the presence of cytotoxicity on Langerhans islet β-cells, it can be concluded that the anionic lipid environment and degree of solvation are critical conditions for the stability of segments with the propensity to form β-sheet structures, a situation that will eventually affect the structural characteristics and stability of IAPP within insulin granules, thus modifying the insulin secretion.
Collapse
Affiliation(s)
- Israel Martínez-Navarro
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico; (I.M.-N.); (R.D.-M.); (A.P.-C.)
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico; (I.M.-N.); (R.D.-M.); (A.P.-C.)
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico; (I.M.-N.); (R.D.-M.); (A.P.-C.)
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (J.M.-O.); (I.L.-R.)
| | - Ismael Luna-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (J.M.-O.); (I.L.-R.)
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico;
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tijuana 22510, Mexico
| | - Ignacio A. Rivero
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Tijuana 22510, Baja California, Mexico;
| | - Marco A. Ramos-Ibarra
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Baja California, Mexico;
| | - Manuel Alatorre-Meda
- Cátedras CONACyT- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tijuana 22510, Mexico;
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Baja California, Mexico; (I.M.-N.); (R.D.-M.); (A.P.-C.)
- Correspondence: ; Tel.: +52-68-6557-1622
| |
Collapse
|
4
|
Rodriguez PM, Stratmann D, Duprat E, Papandreou N, Acuna R, Lacroix Z, Chomilier J. Correlating topology and thermodynamics to predict protein structure sensitivity to point mutations. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2018-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe relation between distribution of hydrophobic amino acids along with protein chains and their structure is far from being completely understood. No reliable method allowsab initioprediction of the folded structure from this distribution of physicochemical properties, even when they are highly degenerated by considering only two classes: hydrophobic and polar. Establishment of long-range hydrophobic three dimension (3D) contacts is essential for the formation of the nucleus, a key process in the early steps of protein folding. Thus, a large number of 3D simulation studies were developed to challenge this issue. They are nowadays evaluated in a specific chapter of the molecular modeling competition, Critical Assessment of Protein Structure Prediction. We present here a simulation of the early steps of the folding process for 850 proteins, performed in a discrete 3D space, which results in peaks in the predicted distribution of intra-chain noncovalent contacts. The residues located at these peak positions tend to be buried in the core of the protein and are expected to correspond to critical positions in the sequence, important both for folding and structural (or similarly, energetic in the thermodynamic hypothesis) stability. The degree of stabilization or destabilization due to a point mutation at the critical positions involved in numerous contacts is estimated from the calculated folding free energy difference between mutated and native structures. The results show that these critical positions are not tolerant towards mutation. This simulation of the noncovalent contacts only needs a sequence as input, and this paper proposes a validation of the method by comparison with the prediction of stability by well-established programs.
Collapse
|
5
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Sneha P, Panda PK, Gharemirshamlu FR, Bamdad K, Balaji S. Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective. J Theor Biol 2018; 451:35-45. [PMID: 29705491 DOI: 10.1016/j.jtbi.2018.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
Abstract
HIV-1 being the most widespread type worldwide, its accounts for almost 95% of all infections including HIV associated dementia (HAD) that triggers neurological dysfunction and neurodegeneration in patients. The common features associated with HAD and other neurodegenerative diseases are accumulation of amyloid plaques, neuronal loss and deterioration of cognitive abilities, amongst which amyloid fibrillation is considered to be a hallmark. The success of effective therapeutics lies in the understanding of mechanisms leading to neurotoxicity. Few viral proteins like gp-120 are known to be involved in aggregation and enhancement of viral infectivity while comprehending the neurotoxic role of some other proteins is still underway. In the current study, amyloidogenic potential of HIV-1 Vpu protein from brain isolate is investigated through computational approaches. The aggregation propensity of brain derived HIV-1 Vpu was assessed by several amyloid prediction servers that projected the region 4-35 to be amyloidogenic. The protein structure was modeled and subjected to 70 ns molecular dynamics (MD) simulation to investigate the transformation of α-helical conformation of the predicted aggregate region into β-sheet, proposing the protein's ability to initiate fibril formation that is central to amyloidogenic proteins. The structural features of brain derived HIV-1 Vpu were consistent with the in silico amyloid prediction results that depicts the conformational change in the region 8-28 of which residues Ala8, Ile9, Val10, Ala19, Ile20 and Val21 constitutes β-sheet formation. The α-helix/β-sheet discordance of the predicted region was reflected in the simulation study highlighting the possible structural transition associated with HIV-1 Vpu protein of brain isolate.
Collapse
Affiliation(s)
- Patil Sneha
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India; Research and Development Centre, Bharathiar University, Coimbatore 641046 India
| | - Pritam Kumar Panda
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India
| | | | - Kourosh Bamdad
- Faculty of Science(,) Payame Noor University, 19395-4697 Iran
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India.
| |
Collapse
|
7
|
Pulido-Capiz A, Díaz-Molina R, Martínez-Navarro I, Guevara-Olaya LA, Casanueva-Pérez E, Mas-Oliva J, Rivero IA, García-González V. Modulation of Amyloidogenesis Controlled by the C-Terminal Domain of Islet Amyloid Polypeptide Shows New Functions on Hepatocyte Cholesterol Metabolism. Front Endocrinol (Lausanne) 2018; 9:331. [PMID: 29988450 PMCID: PMC6026639 DOI: 10.3389/fendo.2018.00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) or amylin maintains a key role in metabolism. This 37-residues-peptide could form pancreatic amyloids, which are a characteristic feature of diabetes mellitus type 2. However, some species do not form amyloid fibril structures. By employing a biomimetic approach, we generated an extensive panel of optimized sequences of IAPP, which could drastically reduce aggregation propensity. A structural and cellular characterization analysis was performed on the C-terminal domain with the highest aggregation propensity. This allowed the observation of an aggregative phenomenon dependent of the lipid environment. Evaluation of the new F23R variant demonstrated inhibition of β-sheet structure and, therefore, amyloid formation on the native C-terminal, phenomenon that was associated with functional optimization in calcium and cholesterol management coupled with the optimization of insulin secretion by beta cells. When F23R variant was evaluated in microglia cells, a model of amyloidosis, cytotoxic conditions were not registered. In addition, it was found that C-terminal sequences of IAPP could modulate cholesterol metabolism in hepatocytes through regulation of SREBP-2, apoA-1, ABCA1, and LDLR, mechanism that may represent a new function of IAPP on the metabolism of cholesterol, increasing the LDL endocytosis in hepatocytes. Optimized sequences with only one residue modification in the C-terminal core aggregation could diminish β-sheet formation and represent a novel strategy adaptable to other pharmacological targets. Our data suggest a new IAPP function associated with rearrangements on metabolism of cholesterol in hepatocytes.
Collapse
Affiliation(s)
- Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Israel Martínez-Navarro
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
- Facultad de Enfermería, Universidad Autónoma de Baja California, Mexico City, Mexico
| | - Lizbeth A. Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Enrique Casanueva-Pérez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ignacio A. Rivero
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
- *Correspondence: Victor García-González,
| |
Collapse
|
8
|
Investigating Mutations to Reduce Huntingtin Aggregation by Increasing Htt-N-Terminal Stability and Weakening Interactions with PolyQ Domain. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:6247867. [PMID: 28096892 PMCID: PMC5206856 DOI: 10.1155/2016/6247867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022]
Abstract
Huntington's disease is a fatal autosomal genetic disorder characterized by an expanded glutamine-coding CAG repeat sequence in the huntingtin (Htt) exon 1 gene. The Htt protein associated with the disease misfolds into toxic oligomers and aggregate fibril structures. Competing models for the misfolding and aggregation phenomena have suggested the role of the Htt-N-terminal region and the CAG trinucleotide repeats (polyQ domain) in affecting aggregation propensities and misfolding. In particular, one model suggests a correlation between structural stability and the emergence of toxic oligomers, whereas a second model proposes that molecular interactions with the extended polyQ domain increase aggregation propensity. In this paper, we computationally explore the potential to reduce Htt aggregation by addressing the aggregation causes outlined in both models. We investigate the mutation landscape of the Htt-N-terminal region and explore amino acid residue mutations that affect its structural stability and hydrophobic interactions with the polyQ domain. Out of the millions of 3-point mutation combinations that we explored, the (L4K E12K K15E) was the most promising mutation combination that addressed aggregation causes in both models. The mutant structure exhibited extreme alpha-helical stability, low amyloidogenicity potential, a hydrophobic residue replacement, and removal of a solvent-inaccessible intermolecular side chain that assists oligomerization.
Collapse
|