1
|
Cheng G, Wang P, Liu H, Zhang D. A study of ab initio folding of chignolins using replica-exchange molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:23658-23666. [PMID: 37609919 DOI: 10.1039/d3cp03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
More and more studies have confirmed the importance of polarization effects in hydrogen bonding interactions in protein folding simulations. In this paper, a recently developed charge update scheme termed polarized structure-specific backbone charge (PSBC) model was applied to the folding of 10-residue chignolin. A comparison between simulations performed using PSBC and a nonpolarizable (AMBER99SB) force field demonstrably showed the importance of the electrostatic polarization effect in the folding of the short β-hairpin peptide by a series of analyses such as DSSP, free-energy landscape, hydrogen bond occupancy, and melting curve. The PSBC model was further validated by folding two other chignolin variants.
Collapse
Affiliation(s)
- Guojie Cheng
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| | - Panpan Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| | - Huihui Liu
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| | - Dawei Zhang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China.
| |
Collapse
|
2
|
Chathoth NE, Nair AG, Anjukandi P. Multifaceted folding-unfolding landscape of the TrpZip2 β-hairpin and the role of external sub-piconewton mechanical tensions. Phys Chem Chem Phys 2023; 25:11093-11101. [PMID: 36938693 DOI: 10.1039/d2cp05770k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Proteins can experience uneven tensions of the order of tens of piconewtons when exposed to different solvent environment due to the thermal motion of the solvent. It is also true that biomolecules, especially proteins, are subjected to a variety of mechanical tensions generated by several factors, including mechanically assisted translocation and pressure gradients within living systems. Here, we use metadynamics simulations to revisit the folding-unfolding of the TrpZip2 β-hairpin and redefine it from the perspective of an external force of a sub-piconewton magnitude acting on the ends of the hairpin. The chosen forces, while preserving the morphology of the β-hairpin chain when it is pulled, are capable of influencing the conformational behavior of the chain during folding and unfolding. Our investigations confirm that the TrpZip2 β-hairpin exhibits a zipper (zip-out) mechanism for folding-unfolding in both mechanically unbiased and biased (with a 30 pN end force) situations. However, it is important to note that they present marked differences in their folding and unfolding paths, with the mechanically biased system capable of becoming trapped in various intermediate states. Both unbiased and biased scenarios of the hairpin indicate that the hairpin turn is highly stable during the folding-unfolding event and initiates folding. More importantly we confirm that the existing heterogeneity in the TrpZip2 β-hairpin folding-unfolding is a consequence of the wide range of conformations observed, owing to the different trapped intermediates caused by the uneven forces it may experience in solution.
Collapse
Affiliation(s)
- Nayana Edavan Chathoth
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| | - Aparna G Nair
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| |
Collapse
|
3
|
Moses K, Van Tassel PR. Polyelectrolyte Influence on Beta-Hairpin Peptide Stability: A Simulation Study. J Phys Chem B 2023; 127:359-370. [PMID: 36574611 DOI: 10.1021/acs.jpcb.2c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of proteins and charged macromolecules (polyelectrolytes) find important applications as pharmaceutical formulations, biocatalysts, and cell-contacting substrates. A key question is how the polymer component influences the structure and function of the protein. The present paper addresses the influence of charged polymers on the thermal stability of two model beta-hairpin-forming peptides through an all-atom, replica exchange molecular dynamics simulation. The (negatively charged) peptides consist of the terminal 16 amino acids of the B1 domain of Protein G (GB1) and a variant with three of the GB1 residues substituted with tryptophan (Tryptophan Zipper 4, or TZ4). A (cationic) lysine polymer is seen to thermally stabilize TZ4 and destabilize GB1, while a (also cationic) chitosan polymer slightly stabilizes GB1 but has essentially no effect on TZ4. Free energy profiles reveal folded and unfolded conformations to be separated by kinetic barriers generally acting in the direction of the thermodynamically favored state. Through application of an Ising-like statistical mechanical model, a mechanism is proposed based on competition between (indirect) entropic stabilization of folded versus unfolded states and (direct) competition for hydrogen-bonding and hydrophobic interactions. These findings have important implications to the design of polyelectrolyte-based materials for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Kevin Moses
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Paul R Van Tassel
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
4
|
Gomari MM, Rostami N, Faradonbeh DR, Asemaneh HR, Esmailnia G, Arab S, Farsimadan M, Hosseini A, Dokholyan NV. Evaluation of pH change effects on the HSA folding and its drug binding characteristics, a computational biology investigation. Proteins 2022; 90:1908-1925. [DOI: 10.1002/prot.26386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamid Reza Asemaneh
- Polymer Research Center, Department of Chemical Engineering Razi University Kermanshah Iran
| | - Giti Esmailnia
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahriar Arab
- Department of Biophysics School of Biological Sciences, Tarbiat Modares University Tehran Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences University of Guilan Rasht Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology Pennsylvania State University College of Medicine Hershey Pennsylvania USA
| |
Collapse
|
5
|
Abstract
Constantly advancing computer simulations of biomolecules provide huge amounts of data that are difficult to interpret. In particular, obtaining insights into functional aspects of macromolecular dynamics, often related to cascades of transient events, calls for methodologies that depart from the well-grounded framework of equilibrium statistical physics. One of the approaches toward the analysis of complex temporal data which has found applications in the fields of neuroscience and econometrics is Granger causality analysis. It allows determining which components of multidimensional time series are most influential for the evolution of the entire system, thus providing insights into causal relations within the dynamic structure of interest. In this work, we apply Granger analysis to a long molecular dynamics trajectory depicting repetitive folding and unfolding of a mini β-hairpin protein, CLN025. We find objective, quantitative evidence indicating that rearrangements within the hairpin turn region are determinant for protein folding and unfolding. On the contrary, interactions between hairpin arms score low on the causality scale. Taken together, these findings clearly favor the concept of zipperlike folding, which is one of two postulated β-hairpin folding mechanisms. More importantly, the results demonstrate the possibility of a conclusive application of Granger causality analysis to a biomolecular system.
Collapse
Affiliation(s)
- Marcin Sobieraj
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Peter EK, Manstein DJ, Shea JE, Schug A. CORE-MD II: A fast, adaptive, and accurate enhanced sampling method. J Chem Phys 2021; 155:104114. [PMID: 34525829 DOI: 10.1063/5.0063664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we present a fast and adaptive correlation guided enhanced sampling method (CORE-MD II). The CORE-MD II technique relies, in part, on partitioning of the entire pathway into short trajectories that we refer to as instances. The sampling within each instance is accelerated by adaptive path-dependent metadynamics simulations. The second part of this approach involves kinetic Monte Carlo (kMC) sampling between the different states that have been accessed during each instance. Through the combination of the partition of the total simulation into short non-equilibrium simulations and the kMC sampling, the CORE-MD II method is capable of sampling protein folding without any a priori definitions of reaction pathways and additional parameters. In the validation simulations, we applied the CORE-MD II on the dialanine peptide and the folding of two peptides: TrpCage and TrpZip2. In a comparison with long time equilibrium Molecular Dynamics (MD), 1 µs replica exchange MD (REMD), and CORE-MD I simulations, we find that the level of convergence of the CORE-MD II method is improved by a factor of 8.8, while the CORE-MD II method reaches acceleration factors of ∼120. In the CORE-MD II simulation of TrpZip2, we observe the formation of the native state in contrast to the REMD and the CORE-MD I simulations. The method is broadly applicable for MD simulations and is not restricted to simulations of protein folding or even biomolecules but also applicable to simulations of protein aggregation, protein signaling, or even materials science simulations.
Collapse
Affiliation(s)
- Emanuel K Peter
- Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Alexander Schug
- John von Neumann Institute for Computing and Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
7
|
Bureau HR, Quirk S, Hernandez R. The relative stability of trpzip1 and its mutants determined by computation and experiment. RSC Adv 2020; 10:6520-6535. [PMID: 35495997 PMCID: PMC9049704 DOI: 10.1039/d0ra00920b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
The single-point mutations of tprzip1 are indicated at left, and their relative energetics are compared at right.
Collapse
|
8
|
Ganguly P, Shea JE. Distinct and Nonadditive Effects of Urea and Guanidinium Chloride on Peptide Solvation. J Phys Chem Lett 2019; 10:7406-7413. [PMID: 31721587 DOI: 10.1021/acs.jpclett.9b03004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using enhanced-sampling replica exchange fully atomistic molecular dynamics simulations, we show that, individually, urea and guanidinium chloride (GdmCl) denature the Trpcage protein, but remarkably, the helical segment 1NLYIQWL7 of the protein is stabilized in mixed denaturant solutions. GdmCl induces protein denaturation via a combination of direct and indirect effects involving dehydration of the protein and destabilization of stabilizing salt bridges. In contrast, urea denatures the protein through favorable protein-urea preferential interactions, with peptide-specific indirect effects of urea on the water structure around the protein. In the case of the helical segment of Trpcage, urea "oversolvates" the peptide backbone by reorganizing water molecules from the peptide side chains to the peptide backbone. An intricate nonadditive thermodynamic balance between GdmCl-induced dehydration of the peptide and the urea-induced changes in solvation structure triggers partial counteraction to urea denaturation and stabilization of the helix.
Collapse
Affiliation(s)
- Pritam Ganguly
- Department of Chemistry and Biochemistry , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
- Department of Physics , University of California at Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
9
|
Zerze GH, Stillinger FH, Debenedetti PG. Computational investigation of retro-isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides. FEBS Lett 2019; 594:104-113. [PMID: 31356683 DOI: 10.1002/1873-3468.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
We use all-atom modeling and advanced-sampling molecular dynamics simulations to investigate quantitatively the effect of peptide bond directionality on the equilibrium structures of four linear (two foldable, two disordered) and two cyclic peptides. We find that the retro forms of cyclic and foldable linear peptides adopt distinctively different conformations compared to their parents. While the retro form of a linear intrinsically disordered peptide with transient secondary structure fails to reproduce a secondary structure content similar to that of its parent, the retro form of a shorter disordered linear peptide shows only minor differences compared to its parent.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Zerze GH, Stillinger FH, Debenedetti PG. Effect of heterochiral inversions on the structure of a β-hairpin peptide. Proteins 2019; 87:569-578. [PMID: 30811673 DOI: 10.1002/prot.25680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/24/2019] [Indexed: 01/25/2023]
Abstract
We study computationally a family of β-hairpin peptides with systematically introduced chiral inversions, in explicit water, and we investigate the extent to which the backbone structure is able to fold in the presence of heterochiral perturbations. In contrast to the recently investigated case of a helical peptide, we do not find a monotonic change in secondary structure content as a function of the number of L- to D-inversions. The effects of L- to D-inversions are instead found to be highly position-specific. Additionally, in contrast to the helical peptide, some inversions increase the stability of the folded peptide: in such cases, we compute an increase in β-sheet content in the aqueous solution equilibrium ensemble. However, the tertiary structures of the stable (folded) configurations for peptides for which inversions cause an increase in β-sheet content show differences from one another, as well as from the native fold of the nonchirally perturbed β-hairpin. Our results suggest that although some chiral perturbations can increase folding stability, chirally perturbed proteins may still underperform functionally, given the relationship between structure and function.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| |
Collapse
|
11
|
Chen J, Liu X, Chen J. Atomistic Peptide Folding Simulations Reveal Interplay of Entropy and Long-Range Interactions in Folding Cooperativity. Sci Rep 2018; 8:13668. [PMID: 30209295 PMCID: PMC6135771 DOI: 10.1038/s41598-018-32028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/30/2018] [Indexed: 11/23/2022] Open
Abstract
Understanding how proteins fold has remained a problem of great interest in biophysical research. Atomistic computer simulations using physics-based force fields can provide important insights on the interplay of different interactions and energetics and their roles in governing the folding thermodynamics and mechanism. In particular, generalized Born (GB)-based implicit solvent force fields can be optimized to provide an appropriate balance between solvation and intramolecular interactions and successfully recapitulate experimental conformational equilibria for a set of helical and β-hairpin peptides. Here, we further demonstrate that key thermodynamic properties and their temperature dependence obtained from replica exchange molecular dynamics simulations of these peptides are in quantitative agreement with experimental results. Useful lessons can be learned on how the interplay of entropy and sequentially long-range interactions governs the mechanism and cooperativity of folding. These results highlight the great potential of high-quality implicit solvent force fields for studying protein folding and large-scale conformational transitions.
Collapse
Affiliation(s)
- Jianlin Chen
- Department of Hematology, The Central Hospital of Taizhou, Taizhou, Zhejiang, 318000, P.R. China
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA. .,Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Zerze GH, Khan MN, Stillinger FH, Debenedetti PG. Computational Investigation of the Effect of Backbone Chiral Inversions on Polypeptide Structure. J Phys Chem B 2018; 122:6357-6363. [PMID: 29793336 DOI: 10.1021/acs.jpcb.8b03157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Studying a set of helix-folding polyalanine peptides with systematically inserted chiral inversions in explicit water, we investigate quantitatively the effect of chiral perturbations on the structural ensembles of the peptides, thereby assessing the extent to which the backbone structure is able to fold in the presence of systematic heterochiral perturbations. Starting from the homochiral l-Ala20 peptide, we invert the backbone chiralities of Ala residues one by one along a specific perturbation pathway, until reaching the homochiral d-Ala20 peptide. Analysis of the helical contents of the simulated structural ensembles of the peptides shows that even a single inversion in the middle of the peptide completely breaks the helical structure in its vicinity and drastically reduces the helical content of the peptide. Further inversions in the middle of the peptide monotonically decrease the original helical content, that is, the right-handed helical content for l-Ala, and increase the helical content of the opposite chirality. Further analysis of the peptide ensembles using several size- and shape-related order parameters also indicate the drastic global changes in the peptide structure due to the local effects caused by the chiral inversions, such as formation of a reverse turn. However, the degree of the structural changes introduced by opposite chirality substitutions depends on the position of the inversion.
Collapse
|
13
|
Peter EK, Shea JE. An adaptive bias - hybrid MD/kMC algorithm for protein folding and aggregation. Phys Chem Chem Phys 2018. [PMID: 28650060 DOI: 10.1039/c7cp03035e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we present a novel hybrid Molecular Dynamics/kinetic Monte Carlo (MD/kMC) algorithm and apply it to protein folding and aggregation in explicit solvent. The new algorithm uses a dynamical definition of biases throughout the MD component of the simulation, normalized in relation to the unbiased forces. The algorithm guarantees sampling of the underlying ensemble in dependency of one average linear coupling factor 〈α〉τ. We test the validity of the kinetics in simulations of dialanine and compare dihedral transition kinetics with long-time MD-simulations. We find that for low 〈α〉τ values, kinetics are in good quantitative agreement. In folding simulations of TrpCage and TrpZip4 in explicit solvent, we also find good quantitative agreement with experimental results and prior MD/kMC simulations. Finally, we apply our algorithm to study growth of the Alzheimer Amyloid Aβ 16-22 fibril by monomer addition. We observe two possible binding modes, one at the extremity of the fibril (elongation) and one on the surface of the fibril (lateral growth), on timescales ranging from ns to 8 μs.
Collapse
Affiliation(s)
- Emanuel K Peter
- Department of Pharmacy and Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Germany
| | | |
Collapse
|
14
|
Co-operative intra-protein structural response due to protein–protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding. J Comput Aided Mol Des 2017; 31:891-903. [DOI: 10.1007/s10822-017-0057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022]
|
15
|
Samanta S, Mukherjee S. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade. J Chem Phys 2017; 146:165103. [DOI: 10.1063/1.4981259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Gupta M, Khatua P, Chakravarty C, Bandyopadhyay S. The sensitivity of folding free energy landscapes of trpzips to mutations in the hydrophobic core. Phys Chem Chem Phys 2017; 19:22813-22825. [DOI: 10.1039/c7cp03825a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensitivity of the stability of folded states and free energy landscapes to the differences in the hydrophobic content of the core residues has been studied for the set of 16-residue trpzips, namely, Trpzip4, Trpzip5 and Trpzip6.
Collapse
Affiliation(s)
- Madhulika Gupta
- Department of Chemistry
- Indian Institute of Technology-Delhi
- New Delhi 110016
- India
| | - Prabir Khatua
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | | | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
17
|
Daidone I, Zanetti-Polzi L, Thukral L, Alekozai EM, Amadei A. Theoretical-computational characterization of the temperature-dependent folding thermodynamics of a β-hairpin peptide. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Bureau HR, Hershkovits E, Quirk S, Hernandez R. Determining the Energetics of Small β-Sheet Peptides using Adaptive Steered Molecular Dynamics. J Chem Theory Comput 2016; 12:2028-37. [PMID: 26930270 DOI: 10.1021/acs.jctc.5b01110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically driven unfolding is a useful computational tool for extracting the energetics and stretching pathway of peptides. In this work, two representative β-hairpin peptides, chignolin (PDB: 1UAO ) and trpzip1 (PDB: 1LE0 ), were investigated using an adaptive variant of the original steered molecular dynamics method called adaptive steered molecular dynamics (ASMD). The ASMD method makes it possible to perform energetic calculations on increasingly complex biological systems. Although the two peptides are similar in length and have similar secondary structures, their unfolding energetics are quite different. The hydrogen bonding profile and specific residue pair interaction energies provide insight into the differing stabilities of these peptides and reveal which of the pairs provides the most significant stabilization.
Collapse
Affiliation(s)
- Hailey R Bureau
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Eli Hershkovits
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Stephen Quirk
- Kimberly-Clark Corporation , Atlanta, Georgia 30076-2199, United States
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
19
|
Zerze GH, Mittal J. Effect of O-Linked Glycosylation on the Equilibrium Structural Ensemble of Intrinsically Disordered Polypeptides. J Phys Chem B 2015; 119:15583-92. [PMID: 26618856 DOI: 10.1021/acs.jpcb.5b10022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs), which provides a large proteome diversity. Previous work on glycosylation of globular proteins has revealed remarkable effects of glycosylation on protein function, altering the folding stability and structure and/or altering the protein surface which affects their binding characteristics. Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) of large proteins are also frequently glycosylated, yet how glycosylation affects their function remains to be elucidated. An important open question is, does glycosylation affect IDP structure or binding characteristics or both? In this work, we particularly address the structural effects of O-linked glycosylation by investigating glycosylated and unglycosylated forms of two different IDPs, tau174-183 and human islet amyloid polypeptide (hIAPP), by all-atom explicit solvent simulations. We simulate these IDPs in aqueous solution for O-linked glycosylated and unglycosylated forms by employing two modern all-atom force fields for which glycan parameters are also available. We find that O-linked glycosylation only has a modest effect on equilibrium structural ensembles of IDPs, for the cases studied here, which suggests that the functional role of glycosylation may be primarily exerted by modulation of the protein binding characteristics rather than structure.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|