1
|
Zeng J, Weng J, Zhang Y, Xia F, Cui Q, Xu X. Conformational Features of Ras: Key Hydrogen-Bonding Interactions of Gln61 in the Intermediate State during GTP Hydrolysis. J Phys Chem B 2021; 125:8805-8813. [PMID: 34324329 DOI: 10.1021/acs.jpcb.1c04679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ras protein is one of the most important drug targets for battling cancers. To effectively design novel drugs of Ras, we characterize here its conformational ensembles for the hydrolysis intermediate state RasGDP·Pi and the product state RasGDP by extensive replica-exchange molecular dynamics simulations. Several substates for RasGDP·Pi have been identified, while structural analyses have revealed an unrecognized hydrogen-bonding network that stabilizes the hydrolysis intermediate state. More interestingly, Gln61, which is involved in numerous oncogenic mutations, was found to be engaged in this hydrogen-bonding network, adopting a specific conformation that always points to Pi in contrast to that in the RasGTP state. The simulations also reveal that RasGDP has more than one substate, suggesting a conformational selection mechanism for the interaction between Ras and the guanine nucleotide exchange factors (GEFs). These findings offer new opportunities for the drug design of Ras by stabilizing the hydrolysis intermediate or disrupting its interaction with the GEFs.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jingwei Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Grigorenko BL, Kots ED, Nemukhin AV. Diversity of mechanisms in Ras-GAP catalysis of guanosine triphosphate hydrolysis revealed by molecular modeling. Org Biomol Chem 2020; 17:4879-4891. [PMID: 31041977 DOI: 10.1039/c9ob00463g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of the deceptively simple reaction of guanosine triphosphate (GTP) hydrolysis catalyzed by the cellular protein Ras in complex with the activating protein GAP is an important issue because of the significance of this reaction in cancer research. We show that molecular modeling of GTP hydrolysis in the Ras-GAP active site reveals a diversity of mechanisms of the intrinsic chemical reaction depending on molecular groups at position 61 in Ras occupied by glutamine in the wild-type enzyme. First, a comparison of reaction energy profiles computed at the quantum mechanics/molecular mechanics (QM/MM) level shows that an assignment of the Gln61 side chain in the wild-type Ras either to QM or to MM parts leads to different scenarios corresponding to the glutamine-assisted or the substrate-assisted mechanisms. Second, replacement of Gln61 by the nitro-analog of glutamine (NGln) or by Glu, applied in experimental studies, results in two more scenarios featuring the so-called two-water and the concerted-type mechanisms. The glutamine-assisted mechanism in the wild-type Ras-GAP, in which the conserved Gln61 plays a decisive role, switching between the amide and imide tautomer forms, is consistent with the known experimental results of structural, kinetic and spectroscopy studies. The results emphasize the role of the Ras residue Gln61 in Ras-GAP catalysis and explain the retained catalytic activity of the Ras-GAP complex towards GTP hydrolysis in the Gln61NGln and Gln61Glu mutants of Ras.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
3
|
Grigorenko BL, Khrenova MG, Nemukhin AV. Amide-imide tautomerization in the glutamine side chain in enzymatic and photochemical reactions in proteins. Phys Chem Chem Phys 2018; 20:23827-23836. [PMID: 30202846 DOI: 10.1039/c8cp04817g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amide-imide tautomerization presents a pervasive class of chemical transformations in organic chemistry of natural compounds. In this Perspective, we describe two distinctively different protein systems, in which the amide-imide tautomerization in the glutamine side chain takes place in enzymatic or photochemical reactions. First, hydrolysis of guanosine triphosphate (GTP) catalyzed by the Ras-GAP protein complex suggests the occurrence of the imide tautomer of glutamine in reaction intermediates. Second, photoexcitation of flavin-binding protein domains (BLUFs) initiates a chain of reactions in the chromophore-binding pocket, including amide-imide tautomerization of glutamine. Mechanisms of these reactions at the atomic level have been revealed in quantum mechanics/molecular mechanics (QM/MM) simulations. To reinforce conclusions on the critical role of amide-imide tautomerization of glutamine in these reactions we describe results of new quantum chemistry and QM/MM calculations for relevant molecular model systems. We reexamine results of the recent IR spectroscopy studies of BLUF domains, which provide experimental evidences of Gln tautomerization in proteins. We also propose to validate the glutamine-assisted mechanism of enzymatic GTP hydrolysis by using IR spectroscopy in a proper range of wavenumbers.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
4
|
Hassan HA, Rani S, Fatima T, Kiani FA, Fischer S. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors. Biophys Chem 2017; 230:27-35. [PMID: 28941815 DOI: 10.1016/j.bpc.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 11/25/2022]
Abstract
Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the OaH bond of the attacking water molecule, and the POl bond of the substrate (Oa and Ol stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of OaH and POl bonds occurs simultaneously, whereas in the sequential mechanism, the OaH and POl bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water OaH bond occurs before the breaking of the POl bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol-1 in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water OaH bond. This component is lowered from 34 to 25kcalmol-1 by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the POl bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water OaH bond and to have little effect on the POl bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the POl bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the β- and γ-phosphates had been shown to promote a mechanism where the POl bond breaks before the OaH bond does. We also point out that the charge shift due to POl bond breaking during sequential ATP hydrolysis in bio-molecular motors onsets the week unbinding of hydrolysis product that finally leads to the product release during power stroke.
Collapse
Affiliation(s)
- Hammad Ali Hassan
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Sadaf Rani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Tabeer Fatima
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan; Department of Biotechnology, University of Gujrat Sialkot Sub Campus, 51310 Sialkot, Pakistan
| | - Farooq Ahmad Kiani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan; Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany street, 02118 Boston, MA, United States.
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Sayyed-Ahmad A, Prakash P, Gorfe AA. Distinct dynamics and interaction patterns in H- and K-Ras oncogenic P-loop mutants. Proteins 2017; 85:1618-1632. [PMID: 28498561 DOI: 10.1002/prot.25317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022]
Abstract
Despite years of study, the structural or dynamical basis for the differential reactivity and oncogenicity of Ras isoforms and mutants remains unclear. In this study, we investigated the effects of amino acid variations on the structure and dynamics of wild type and oncogenic mutants G12D, G12V, and G13D of H- and K-Ras proteins. Based on data from µs-scale molecular dynamics simulations, we show that the overall structure of the proteins remains similar but there are important differences in dynamics and interaction networks. We identified differences in residue interaction patterns around the canonical switch and distal loop regions, and persistent sodium ion binding near the GTP particularly in the G13D mutants. Our results also suggest that different Ras variants have distinct local structural features and interactions with the GTP, variations that have the potential to affect GTP release and hydrolysis. Furthermore, we found that H-Ras proteins and particularly the G12V and G13D variants are significantly more flexible than their K-Ras counterparts. Finally, while most of the simulated proteins sampled the effector-interacting state 2 conformational state, G12V and G13D H-Ras adopted an open switch state 1 conformation that is defective in effector interaction. These differences have implications for Ras GTPase activity, effector or exchange factor binding, dimerization and membrane interaction. Proteins 2017; 85:1618-1632. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| |
Collapse
|
6
|
Metal Fluorides: Tools for Structural and Computational Analysis of Phosphoryl Transfer Enzymes. Top Curr Chem (Cham) 2017; 375:36. [PMID: 28299727 PMCID: PMC5480424 DOI: 10.1007/s41061-017-0130-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/01/2017] [Indexed: 10/31/2022]
Abstract
The phosphoryl group, PO3-, is the dynamic structural unit in the biological chemistry of phosphorus. Its transfer from a donor to an acceptor atom, with oxygen much more prevalent than nitrogen, carbon, or sulfur, is at the core of a great majority of enzyme-catalyzed reactions involving phosphate esters, anhydrides, amidates, and phosphorothioates. The serendipitous discovery that the phosphoryl group could be labeled by "nuclear mutation," by substitution of PO3- by MgF3- or AlF4-, has underpinned the application of metal fluoride (MF x ) complexes to mimic transition states for enzymatic phosphoryl transfer reactions, with sufficient stability for experimental analysis. Protein crystallography in the solid state and 19F NMR in solution have enabled direct observation of ternary and quaternary protein complexes embracing MF x transition state models with precision. These studies have underpinned a radically new mechanistic approach to enzyme catalysis for a huge range of phosphoryl transfer processes, as varied as kinases, phosphatases, phosphomutases, and phosphohydrolases. The results, without exception, have endorsed trigonal bipyramidal geometry (tbp) for concerted, "in-line" stereochemistry of phosphoryl transfer. QM computations have established the validity of tbp MF x complexes as reliable models for true transition states, delivering similar bond lengths, coordination to essential metal ions, and virtually identical hydrogen bond networks. The emergence of protein control of reactant orbital overlap between bond-forming species within enzyme transition states is a new challenging theme for wider exploration.
Collapse
|
7
|
Khrenova MG, Grigorenko BL, Nemukhin AV. Theoretical vibrational spectroscopy of intermediates and the reaction mechanism of the guanosine triphosphate hydrolysis by the protein complex Ras-GAP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:68-72. [PMID: 27214270 DOI: 10.1016/j.saa.2016.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The structures and vibrational spectra of the reacting species upon guanosine triphosphate (GTP) hydrolysis to guanosine diphosphate and inorganic phosphate (Pi) trapped inside the protein complex Ras-GAP were analyzed following the results of QM/MM simulations. The frequencies of the phosphate vibrations referring to the reactants and to Pi were compared to those observed in the experimental FTIR studies. A good correlation between the theoretical and experimental vibrational data provides a strong support to the reaction mechanism of GTP hydrolysis by the Ras-GAP enzyme system revealed by the recent QM/MM modeling. Evolution of the vibrational bands associated with the inorganic phosphate Pi during the elementary stages of GTP hydrolysis is predicted.
Collapse
Affiliation(s)
- Maria G Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Bella L Grigorenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia
| | - Alexander V Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia.
| |
Collapse
|
8
|
Khrenova MG, Kots ED, Nemukhin AV. Reaction Mechanism of Guanosine Triphosphate Hydrolysis by the Vision-Related Protein Complex Arl3-RP2. J Phys Chem B 2016; 120:3873-9. [PMID: 27043216 DOI: 10.1021/acs.jpcb.6b03363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complexes of small GTPases with GTPase-activating proteins have been intensively studied with the main focus on the complex of H-Ras with p120GAP (Ras-GAP). The detailed mechanism of GTP hydrolysis is still unresolved. To clarify it, we calculated the energy profile of GTP hydrolysis in the active site of a recently characterized vision-related member of this family, the Arl3-RP2 complex. The mechanism suggested in this study retains the main features of GTP hydrolysis by the Ras-GAP complex, but the relative energies of the corresponding intermediates are different and an additional intermediate exists in the Arl3-RP2 complex compared with the Ras-GAP. These differences arise from small deviations in the catalytic arginine conformation of the active site. In the Arl3-RP2 complex, the first two intermediates, corresponding to the Pγ-Oβγ bond cleavage and the glutamine-assisted proton transfer, are almost isoenergetic with the ES complex. Numerical simulations of the kinetic curves demonstrate that the concentrations of these intermediates are comparable with that of ES during the reaction. The calculated IR spectra reveal specific vibrational bands, corresponding to these intermediates. These specific features of the Arl3-RP2 complex open the opportunity to identify spectroscopically two more reaction intermediates in GTP hydrolysis in addition to the ES and EP complexes.
Collapse
Affiliation(s)
- Maria G Khrenova
- Chemistry Department, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Ekaterina D Kots
- Chemistry Department, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow, 119991, Russian Federation.,N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygina 4, Moscow, 119334, Russian Federation
| | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow, 119991, Russian Federation.,N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygina 4, Moscow, 119334, Russian Federation
| |
Collapse
|
9
|
Khrenova MG, Grigorenko BL, Kolomeisky AB, Nemukhin AV. Hydrolysis of Guanosine Triphosphate (GTP) by the Ras·GAP Protein Complex: Reaction Mechanism and Kinetic Scheme. J Phys Chem B 2015; 119:12838-45. [PMID: 26374425 DOI: 10.1021/acs.jpcb.5b07238] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular mechanisms of the hydrolysis of guanosine triphosphate (GTP) to guanosine diphosphate (GDP) and inorganic phosphate (Pi) by the Ras·GAP protein complex are fully investigated by using modern modeling tools. The previously hypothesized stages of the cleavage of the phosphorus-oxygen bond in GTP and the formation of the imide form of catalytic Gln61 from Ras upon creation of Pi are confirmed by using the higher-level quantum-based calculations. The steps of the enzyme regeneration are modeled for the first time, providing a comprehensive description of the catalytic cycle. It is found that for the reaction Ras·GAP·GTP·H2O → Ras·GAP·GDP·Pi, the highest barriers correspond to the process of regeneration of the active site but not to the process of substrate cleavage. The specific shape of the energy profile is responsible for an interesting kinetic mechanism of the GTP hydrolysis. The analysis of the process using the first-passage approach and consideration of kinetic equations suggest that the overall reaction rate is a result of the balance between relatively fast transitions and low probability of states from which these transitions are taking place. Our theoretical predictions are in excellent agreement with available experimental observations on GTP hydrolysis rates.
Collapse
Affiliation(s)
- Maria G Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Bella L Grigorenko
- Chemistry Department, M.V. Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation.,N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygina 4, Moscow 119334, Russian Federation
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Alexander V Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University , Leninskie Gory 1/3, Moscow 119991, Russian Federation.,N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygina 4, Moscow 119334, Russian Federation
| |
Collapse
|