1
|
Cabanding JMG, Yu SSF, Lin ZH, Fortuna MA, Elatico AJJ, Nellas RB. The importance of helical structures to the overall activity and structural stability of a lipase from Pseudomonas aeruginosa PAO1 in n-hexane. Arch Biochem Biophys 2025; 764:110226. [PMID: 39617119 DOI: 10.1016/j.abb.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bacterial lipases are versatile extracellular enzymes with a catalytic triad at the active site and a flexible 'lid' that modulates catalytic accessibility. We combined computational modeling with preliminary in vitro testing to assess the structural stability and activity of the Pseudomonas aeruginosa PAO1 lipase (PAL). We evaluated several systems consisting of the native and mutant forms of the lipase in n-hexane using molecular dynamics simulations. Structural stability was assessed by calculating the B-factor for each system. We measured the gorge radius of the catalytic channel and the RMSD of the catalytic triad to approximate enzymatic activity. Based on the correlation of these metrics, mutant forms were selected for their potential activity and stability. Selected mutant forms were expressed in E. coli BL21, mass-produced, and validated through a lipase-catalyzed esterification assay in n-hexane. Several helices outside the 'lid' region were found to influence lid conformational switching. Moreover, our preliminary experimental results show promise in validating our in silico predictions. Our integrated in silico and in vitro pipeline offers a promising approach for designing and producing industrially relevant lipases.
Collapse
Affiliation(s)
- Jaidriel Meg G Cabanding
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines; Department of Chemistry, College of Science, Tarlac State University, Tarlac City, 2300, Philippines
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115201, Taiwan
| | - Zhi-Han Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115201, Taiwan
| | - Myrnel A Fortuna
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Adam Jo J Elatico
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
2
|
Li Y, Li C, Pan F, Wang K, Weng S, Zhao M, Li Q, Wang D, Zhao L, Liu X, Hu Z. High hydrostatic pressure reduces inflammation induced by litchi thaumatin-like protein via altering active domain. Food Chem 2024; 461:140858. [PMID: 39173258 DOI: 10.1016/j.foodchem.2024.140858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Thaumatin-like proteins (TLP), existing in various fruits, have allergenic and pro-inflammatory activities. The current research attempts to reduce the pro-inflammatory activity of litchi TLP (LcTLP) through high hydrostatic pressure (HHP). This study demonstrated that HHP (250-500 MPa, 5-10 min) was a potential technique to reduce the pro-inflammatory activity of LcTLP, which was attributed to the irreversible destruction of the active domain, ie., V-cleft. SDS-PAGE showed no change in the protein profile. Continuous HHP treatment promoted LcTLP unfolding and then reassembling (400 MPa was the transition pressure), and the content of β-sheets decreased from 35.4% to 31.1%. HHP treatment could mitigate inflammatory responses of LcTLP, as confirmed by ELISA and western blot. Molecular dynamics simulations showed significant changes in the residue network under HHP, thereby affecting the V-cleft. These findings provide a theoretical explanation and structural insights into the HHP-induced reduction of pro-inflammatory activity of LcTLP.
Collapse
Affiliation(s)
- Yun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holding Limited, Guangzhou 510130, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaoquan Weng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd., Guangzhou 510623, China
| | - Min Zhao
- Guangzhou Wanglaoji Great Health Industry Co., Ltd., Guangzhou 510623, China
| | - Qian Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Zheng N, Gao L, Long M, Zhang Z, Zhu C, Lv X, Zhou Q, Xia X. Isothermal Compressibility Perturbation as a Protein Design Principle for T1 Lipase Stability-Activity Trade-Off Counteracting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6681-6690. [PMID: 37083407 DOI: 10.1021/acs.jafc.3c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Given the widely existing stability-activity trade-off in enzyme evolution, it is still a goal to obtain enzymes embracing both high activity and stability. Herein, we employed an isothermal compressibility (βT) perturbation engineering (ICPE) strategy to comprehensively understand the stability-activity seesaw-like mechanism. The stability and activity of mutants derived from ICPE uncovered a high Pearson correlation (r = 0.93) in a prototypical enzyme T1 lipase. The best variant A186L/L188M/A190Y exhibited a high Tm value up to 78.70 °C, catalytic activity of 474.04 U/mg, and a 73.33% increase in dimethyl sulfoxide resistance compared to the wild type, one of the highest comprehensive performances reported to date. The elastic activation mechanism mediated by conformational change with a ΔβT range of -6.81 × 10-6 to -1.90 × 10-6 bar-1 may account for the balancing of stability and activity to achieve better performing enzymes. The ICPE strategy deepens our understanding of stability-activity trade-off and boosts its applications in enzyme engineering.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ling Gao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cailin Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiang Lv
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Yang D, Reyes-De-Corcuera JI. Increased activity of alcohol oxidase at high hydrostatic pressure. Enzyme Microb Technol 2021; 145:109751. [PMID: 33750541 DOI: 10.1016/j.enzmictec.2021.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Alcohol oxidase (AOx) from P. pastoris has potential applications in the production of carbonyl compounds and for the detection and quantification of alcohols. However, AOx's poor stability and low activity have hindered its practical application. There are two fractions of AOx in P. pastoris with different thermal stability. High hydrostatic pressure (HHP) increased the activity of the labile (L) + resistant (R) combined fractions but not of the R fraction alone. The activity of the L + R fractions increased 2.4-fold at 160 MPa and 30 °C compared to the activity at 0.1 MPa. At higher temperatures, the increase in activity with pressure was greater due to the combined stabilization and activation effects. The reaction rate of the R fraction at 50 °C was 17.9 ± 3.6 or 17.7 ± 0.8 μM min-1 at 80 or 160 MPa, respectively, and was not significantly different from the activity of the L + R fractions under the same conditions (18.4 ± 2.7 μM min-1). The activation energy of the R fraction was not significantly different between 80 MPa (41.5 ± 10.5 kJ mol-1) and 160 MPa (43.8 ± 7.8 kJ mol-1). The combined increase in the stability of the R fraction at HHP enables the use of the enzyme at 50 °C with little loss of activity and an increased catalytic rate.
Collapse
Affiliation(s)
- Daoyuan Yang
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
6
|
Lim JPL, Braza MKE, Nellas RB. The effect of ligand affinity to the contact dynamics of the ligand binding domain of thyroid hormone receptor - retinoid X receptor. J Mol Graph Model 2021; 104:107829. [PMID: 33450664 DOI: 10.1016/j.jmgm.2020.107829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Ligand-based allostery has been gaining attention for its importance in protein regulation and implication in drug design. One of the interesting cases of protein allostery is the thyroid hormone receptor - retinoid x receptor (TR:RXR), which regulates the gene expression of important physiological processes, such as development and metabolism. It is regulated by the TR native ligand triiodothyronine (T3), which displays anticooperative behavior to the RXR ligand 9-cis retinoic acid (9C). In contrast to this anticooperative behavior, 9C has been shown to increase the activity of TR:RXR. Here we probed the influence of the affinity and the interactions of the TR ligand to the allostery of the TR:RXR through contact dynamics and residue networks. The TR ligand analogs were designed to have higher (G2) and lower (N1) binding energies than T3 when docked to the TR:RXR(9C) complex. The aqueous TR(N1/T3/G2):RXR(9C) complexes were subjected to 30 ns all-atom simulations using theNAMD. The program CAMERRA was used to capture the subtle perturbations of TR:RXR by mapping the residue contact dynamics. Various parts of the TR ligands; including the hydrophilic head, the iodine substituents, and the ligand tail; have been probed for their significance in ligand affinity. The results on the T3 and G2 complexes suggest that ligand affinity can be utilized as a predictor for anticooperative systems on which ligand is more likely to dissociate or remain bound. All 3 complexes also display distinct contact networks for cross-dimer signalling and ligand communication. Understanding ligand-based allostery could potentially unveil secrets of ligand-regulated protein dynamics, a foundation for the design of better and more efficient allosteric drugs.
Collapse
Affiliation(s)
- James Peter L Lim
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Mac Kevin E Braza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
7
|
Chen G, Zhang Q, Chen H, Lu Q, Miao M, Campanella OH, Feng B. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis. Int J Biol Macromol 2020; 154:1314-1323. [PMID: 31733249 DOI: 10.1016/j.ijbiomac.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
An in situ and real-time investigation was performed using an optical cell system and in-silico analysis to reveal the impacts of pressure and temperature on the conformational state and behaviours of Rhizopus chinensis lipase (RCL). The fluorescence intensity (FI) of RCL increased remarkably under high pressure, and part of this increase was recovered after depressurization. This result displayed the partially reversible conformational change of RCL, which may be associated with the local change of Trp224 near the catalytic centre. High temperature caused a significant loss of secondary structure, whereas the α-helical segments including the lid were preserved by high pressure even at temperatures over 60 °C. The parameters of enzymatic reaction monitored by UV showed that the hydrolysis rate was remarkably enhanced by the pressure of 200 MPa. In the pressure range of 0.1-200 MPa, the active volume measured by the in situ system decreased from -2.85 to -6.73 mL/mol with the temperature increasing from 20 °C to 40 °C. The high catalytic capacity of the lipase under high pressure and high temperature was primarily attributed to pressure protection on RCL.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, PR China
| | - Qiupei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Haitao Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, PR China
| | - Qiyu Lu
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
8
|
Surpeta B, Sequeiros-Borja CE, Brezovsky J. Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and Engineering. Int J Mol Sci 2020; 21:E2713. [PMID: 32295283 PMCID: PMC7215530 DOI: 10.3390/ijms21082713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
Computational prediction has become an indispensable aid in the processes of engineering and designing proteins for various biotechnological applications. With the tremendous progress in more powerful computer hardware and more efficient algorithms, some of in silico tools and methods have started to apply the more realistic description of proteins as their conformational ensembles, making protein dynamics an integral part of their prediction workflows. To help protein engineers to harness benefits of considering dynamics in their designs, we surveyed new tools developed for analyses of conformational ensembles in order to select engineering hotspots and design mutations. Next, we discussed the collective evolution towards more flexible protein design methods, including ensemble-based approaches, knowledge-assisted methods, and provable algorithms. Finally, we highlighted apparent challenges that current approaches are facing and provided our perspectives on their further development.
Collapse
Affiliation(s)
- Bartłomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (B.S.); (C.E.S.-B.)
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Carlos Eduardo Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (B.S.); (C.E.S.-B.)
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (B.S.); (C.E.S.-B.)
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
9
|
Verma N, Dollinger P, Kovacic F, Jaeger KE, Gohlke H. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. J Comput Chem 2019; 41:500-512. [PMID: 31618459 DOI: 10.1002/jcc.26085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Lipases are essential and widely used biocatalysts. Hence, the production of lipases requires a detailed understanding of the molecular mechanism of its folding and secretion. Lipase A from Pseudomonas aeruginosa, PaLipA, constitutes a prominent example that has additional relevance because of its role as a virulence factor in many diseases. PaLipA requires the assistance of a membrane-integrated steric chaperone, the lipase-specific foldase Lif, to achieve its enzymatically active state. However, the molecular mechanism of how Lif activates its cognate lipase has remained elusive. Here, we show by molecular dynamics simulations at the atomistic level and potential of mean force computations that Lif catalyzes the activation process of PaLipA by structurally stabilizing an intermediate PaLipA conformation, particularly a β-sheet in the region of residues 17-30, such that the opening of PaLipA's lid domain is facilitated. This opening allows substrate access to PaLipA's catalytic site. A surprising and so far not fully understood aspect of our study is that the open state of PaLipA is unstable compared to the closed one according to our computational and in vitro biochemical results. We thus speculate that further interactions of PaLipA with the Xcp secretion machinery and/or components of the extracellular matrix contribute to the remaining activity of secreted PaLipA. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neha Verma
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Peter Dollinger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| |
Collapse
|
10
|
Lindsay RJ, Pham B, Shen T, McCord RP. Characterizing the 3D structure and dynamics of chromosomes and proteins in a common contact matrix framework. Nucleic Acids Res 2019; 46:8143-8152. [PMID: 29992238 PMCID: PMC6144818 DOI: 10.1093/nar/gky604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Conformational ensembles of biopolymers, whether proteins or chromosomes, can be described using contact matrices. Principal component analysis (PCA) on the contact data has been used to interrogate both protein and chromosome structures and/or dynamics. However, as these fields have developed separately, variants of PCA have emerged. Previously, a variant we hereby term Implicit-PCA (I-PCA) has been applied to chromosome contact matrices and revealed the spatial segregation of active and inactive chromatin. Separately, Explicit-PCA (E-PCA) has previously been applied to proteins and characterized their correlated structure fluctuations. Here, we swapped analysis methods (I-PCA and E-PCA), applying each to a different biopolymer type (chromosome or protein) than the one for which they were initially developed. We find that applying E-PCA to chromosome distance matrices derived from microscopy data can reveal the dominant motion (concerted fluctuation) of these chromosomes. Further, by applying E-PCA to Hi-C data across the human blood cell lineage, we isolated the aspects of chromosome structure that most strongly differentiate cell types. Conversely, when we applied I-PCA to simulation snapshots of proteins, the major component reported the consensus features of the structure, making this a promising approach for future analysis of semi-structured proteins.
Collapse
Affiliation(s)
- Richard J Lindsay
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Hata H, Nishiyama M, Kitao A. Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129395. [PMID: 31302180 DOI: 10.1016/j.bbagen.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. SCOPE OF REVIEW First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. MAJOR CONCLUSIONS Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. GENERAL SIGNIFICANCE MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
Collapse
Affiliation(s)
- Hiroaki Hata
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
12
|
Pham B, Lindsay RJ, Shen T. Effector-Binding-Directed Dimerization and Dynamic Communication between Allosteric Sites of Ribonucleotide Reductase. Biochemistry 2019; 58:697-705. [PMID: 30571104 DOI: 10.1021/acs.biochem.8b01131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins forming dimers or larger complexes can be strongly influenced by their effector-binding status. We investigated how the effector-binding event is coupled with interface formation via computer simulations, and we quantified the correlation of two types of contact interactions: between the effector and its binding pocket and between protein monomers. This was achieved by connecting the protein dynamics at the monomeric level with the oligomer interface information. We applied this method to ribonucleotide reductase (RNR), an essential enzyme for de novo DNA synthesis. RNR contains two important allosteric sites, the s-site (specificity site) and the a-site (activity site), which bind different effectors. We studied these different binding states with atomistic simulation and used their coarse-grained contact information to analyze the protein dynamics. The results reveal that the effector-protein dynamics at the s-site and dimer interface formation are positively coupled. We further quantify the resonance level between these two events, which can be applied to other similar systems. At the a-site, different effector-binding states (ATP vs dATP) drastically alter the protein dynamics and affect the activity of the enzyme. On the basis of these results, we propose a new mechanism of how the a-site regulates enzyme activation.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology , Knoxville , Tennessee 37996 , United States
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
13
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
14
|
Cheng C, Jiang T, Wu Y, Cui L, Qin S, He B. Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment. Int J Biol Macromol 2018; 119:1211-1217. [DOI: 10.1016/j.ijbiomac.2018.07.158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
|
15
|
Lindsay RJ, Siess J, Lohry DP, McGee TS, Ritchie JS, Johnson QR, Shen T. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices. J Chem Phys 2018; 148:025101. [PMID: 29331124 DOI: 10.1063/1.5004141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.
Collapse
Affiliation(s)
- Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, Tennessee 37996, USA
| | - Jan Siess
- Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David P Lohry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Trevor S McGee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jordan S Ritchie
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Quentin R Johnson
- UT-ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Tongye Shen
- UT-ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
16
|
Johnson QR, Lindsay RJ, Shen T. CAMERRA: An analysis tool for the computation of conformational dynamics by evaluating residue-residue associations. J Comput Chem 2018; 39:1568-1578. [PMID: 29464733 DOI: 10.1002/jcc.25192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue-residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Quentin R Johnson
- National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, 37996.,Oak Ridge National Laboratory, UT-ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee, 37830
| | - Richard J Lindsay
- Oak Ridge National Laboratory, UT-ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee, 37830.,UT-ORNL Graduate School of Genome Science and Technology, Knoxville, Tennessee, 37996
| | - Tongye Shen
- Oak Ridge National Laboratory, UT-ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee, 37830.,Department of Biochemistry Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
17
|
Chen G, Wang L, Miao M, Jia C, Feng B. Coupled effects of salt and pressure on catalytic ability of Rhizopus chinensis lipase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5381-5387. [PMID: 28500670 DOI: 10.1002/jsfa.8427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Both high pressure and environmental factors could influence the catalytic abilities of enzymes. This work investigated coupled effects of pressure and salts on Rhizopus chinensis lipase (RCL) to provide significant information for its further applications. RESULTS The maximum activity of RCL was observed under 200 MPa at 40 °C. The highest activity was achieved at concentrations of 0.06-0.1 mol L-1 for tested salts. The effect of monovalent cations on RCL activity followed the Hofmeister series (K+ > Na+ > Li+ ) at 0.1 MPa but the order of Na+ and K+ was changed under 200 MPa. Meanwhile, the effects of anions did not follow the Hofmeister series. KCl slightly improved the thermostability of RCL at moderate concentration. At 60 °C, LiCl only stabilised RCL at 0.1 mol L-1 . The pre-transition unfolding point was shifted from 4.5 to 3.5 mol L-1 with pressure increasing from 0.1 to 600 MPa. In addition, KCl could not change the lipase's extrinsic fluorescence evolution versus pressure. CONCLUSION Pressure and salts could improve catalytic ability and stability of RCL under appropriate conditions. The effect of high pressure on RCL was influenced by salts. Meanwhile salts cannot prevent high pressure-induced damage to RCL. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Lu Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Chengsheng Jia
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Biao Feng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
18
|
Elucidation of pressure-induced lid movement and catalysis behavior of Rhizopus chinensis lipase. Int J Biol Macromol 2017; 103:360-365. [DOI: 10.1016/j.ijbiomac.2017.04.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
|
19
|
Chen G, Miao M, Jiang B, Jin J, Campanella OH, Feng B. Effects of high hydrostatic pressure on lipase from Rhizopus chinensis: I. Conformational changes. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Krobath H, Chen T, Chan HS. Volumetric Physics of Polypeptide Coil–Helix Transitions. Biochemistry 2016; 55:6269-6281. [DOI: 10.1021/acs.biochem.6b00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich Krobath
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Chen
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Chen G, Du H, Jiang B, Miao M, Feng B. Activity of Candida rugosa lipase for synthesis of hexyl octoate under high hydrostatic pressure and the mechanism of this reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Lindsay RJ, Johnson QR, Evangelista W, Nellas RB, Shen T. DMSO enhanced conformational switch of an interfacial enzyme. Biopolymers 2016; 105:864-72. [PMID: 27463323 DOI: 10.1002/bip.22924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022]
Abstract
Interfacial proteins function in unique heterogeneous solvent environments, such as water-oil interfaces. One important example is microbial lipase, which is activated in an oil-water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all-atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed-gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open-gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α-helical, as we previously observed in studies that address water-oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.
Collapse
Affiliation(s)
- Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, 37996.,Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830
| | - Quentin R Johnson
- Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830.,National Institute for Mathematical and Biological Synthesis, Knoxville, TN, 37996
| | - Wilfredo Evangelista
- Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830.,Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996
| | - Ricky B Nellas
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | - Tongye Shen
- Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830. .,Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996.
| |
Collapse
|