1
|
Hacisuleyman A, Erman B. Fine tuning rigid body docking results using the Dreiding force field: A computational study of 36 known nanobody-protein complexes. Proteins 2023; 91:1417-1426. [PMID: 37232507 DOI: 10.1002/prot.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
This paper aims to understand the binding strategies of a nanobody-protein pair by studying known complexes. Rigid body protein-ligand docking programs produce several complexes, called decoys, which are good candidates with high scores of shape complementarity, electrostatic interactions, desolvation, buried surface area, and Lennard-Jones potentials. However, the decoy that corresponds to the native structure is not known. We studied 36 nanobody-protein complexes from the single domain antibody database, sd-Ab DB, http://www.sdab-db.ca/. For each structure, a large number of decoys are generated using the Fast Fourier Transform algorithm of the software ZDOCK. The decoys were ranked according to their target protein-nanobody interaction energies, calculated by using the Dreiding Force Field, with rank 1 having the lowest interaction energy. Out of 36 protein data bank (PDB) structures, 25 true structures were predicted as rank 1. Eleven of the remaining structures required Ångstrom size rigid body translations of the nanobody relative to the protein to match the given PDB structure. After the translation, the Dreiding interaction (DI) energies of all complexes decreased and became rank 1. In one case, rigid body rotations as well as translations of the nanobody were required for matching the crystal structure. We used a Monte Carlo algorithm that randomly translates and rotates the nanobody of a decoy and calculates the DI energy. Results show that rigid body translations and the DI energy are sufficient for determining the correct binding location and pose of ZDOCK created decoys. A survey of the sd-Ab DB showed that each nanobody makes at least one salt bridge with its partner protein, indicating that salt bridge formation is an essential strategy in nanobody-protein recognition. Based on the analysis of the 36 crystal structures and evidence from existing literature, we propose a set of principles that could be used in the design of nanobodies.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Burak Erman
- Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
2
|
Ricin toxin and its neutralizing antibodies: A review. Toxicon 2022; 214:47-53. [PMID: 35595086 DOI: 10.1016/j.toxicon.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
Ricin toxin (RT) belongs to the ribosome-inactivating protein (RIP) family of toxins and is considered to be a moderate threat by the US Center of Disease Control and Prevention (CDC). RT poses a great potential threat to the public, but there has been a lack of effective treatment options so far. Over the past few decades, researches on the prevention and treatment of RT poisoning have been investigated, among which neutralizing antibodies targeting RT specifically have always been a research hotspot. In this review, we have summarized the mechanism of action of RT, the research results and the design strategies of RT neutralizing antibodies, and discussed the key issues in the development of RT neutralizing antibody researches.
Collapse
|
3
|
Rudolph MJ, Poon AY, Kavaliauskiene S, Myrann AG, Reynolds-Peterson C, Davis SA, Sandvig K, Vance DJ, Mantis NJ. Structural Analysis of Toxin-Neutralizing, Single-Domain Antibodies that Bridge Ricin's A-B Subunit Interface. J Mol Biol 2021; 433:167086. [PMID: 34089718 DOI: 10.1016/j.jmb.2021.167086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023]
Abstract
Ricin toxin kills mammalian cells with notorious efficiency. The toxin's B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin's A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin's individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA's F-G loop (mode 1), RTB's subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin's cytotoxic pathway.
Collapse
Affiliation(s)
| | - Amanda Y Poon
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anne Grethe Myrann
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | - Claire Reynolds-Peterson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simon A Davis
- New York Structural Biology Center, New York, NY, USA
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
4
|
Yu X, Xu Q, Wu Y, Jiang H, Wei W, Zulipikaer A, Guo Y, Jirimutu, Chen J. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomater Sci 2020; 8:3559-3573. [PMID: 32490444 DOI: 10.1039/d0bm00574f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanobodies are antigen binding variable domains of heavy-chain antibodies without light-chains, and these biomolecules occur naturally in the serum of Camelidae species. Nanobodies have a compact structure and low molecular weight when compared with antibodies, and are the smallest active antigen-binding fragments. Because of their remarkable stability and manipulable characteristics, nanobodies have been incorporated into biomaterials and used as molecular recognition and tracing agents, drug delivery systems, molecular imaging tools and disease therapeutics. This review summarizes recent progress in this field focusing on nanobodies as versatile biomolecules for biomedical applications.
Collapse
Affiliation(s)
- Xinyu Yu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mooney B, Torres‐Velez FJ, Doering J, Ehrbar DJ, Mantis NJ. Sensitivity of Kupffer cells and liver sinusoidal endothelial cells to ricin toxin and ricin toxin-Ab complexes. J Leukoc Biol 2019; 106:1161-1176. [PMID: 31313388 PMCID: PMC7008010 DOI: 10.1002/jlb.4a0419-123r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ricin toxin is a plant-derived, ribosome-inactivating protein that is rapidly cleared from circulation by Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs)-with fatal consequences. Rather than being inactivated, ricin evades normal degradative pathways and kills both KCs and LSECs with remarkable efficiency. Uptake of ricin by these 2 specialized cell types in the liver occurs by 2 parallel routes: a "lactose-sensitive" pathway mediated by ricin's galactose/N-acetylgalactosamine-specific lectin subunit (RTB), and a "mannose-sensitive" pathway mediated by the mannose receptor (MR; CD206) or other C-type lectins capable of recognizing the mannose-side chains displayed on ricin's A (RTA) and B subunits. In this report, we investigated the capacity of a collection of ricin-specific mouse MAb and camelid single-domain (VH H) antibodies to protect KCs and LSECs from ricin-induced killing. In the case of KCs, individual MAbs against RTA or RTB afforded near complete protection against ricin in ex vivo and in vivo challenge studies. In contrast, individual MAbs or VH Hs afforded little (<40%) or even no protection to LSECs against ricin-induced death. Complete protection of LSECs was only achieved with MAb or VH H cocktails, with the most effective mixtures targeting RTA and RTB simultaneously. Although the exact mechanisms of protection of LSECs remain unknown, evidence indicates that the Ab cocktails exert their effects on the mannose-sensitive uptake pathway without the need for Fcγ receptor involvement. In addition to advancing our understanding of how toxins and small immune complexes are processed by KCs and LSECs, our study has important implications for the development of Ab-based therapies designed to prevent or treat ricin exposure should the toxin be weaponized.
Collapse
Affiliation(s)
- Bridget Mooney
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Fernando J. Torres‐Velez
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Jennifer Doering
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Dylan J. Ehrbar
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| | - Nicholas J. Mantis
- Division of Infectious DiseasesWadsworth CenterNew York State Department of HealthAlbanyNew YorkUSA
| |
Collapse
|
6
|
Bansia H, Bagaria S, Karande AA, Ramakumar S. Structural basis for neutralization of cytotoxic abrin by monoclonal antibody D6F10. FEBS J 2019; 286:1003-1029. [DOI: 10.1111/febs.14716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Harsh Bansia
- Department of Physics Indian Institute of Science Bengaluru India
| | - Shradha Bagaria
- Department of Biochemistry Indian Institute of Science Bengaluru India
| | | | | |
Collapse
|
7
|
Abstract
In this report, we used hydrogen exchange-mass spectrometry (HX-MS) to identify the epitopes recognized by 21 single-domain camelid antibodies (VHHs) directed against the ribosome-inactivating subunit (RTA) of ricin toxin, a biothreat agent of concern to military and public health authorities. The VHHs, which derive from 11 different B-cell lineages, were binned together based on competition ELISAs with IB2, a monoclonal antibody that defines a toxin-neutralizing hotspot ("cluster 3") located in close proximity to RTA's active site. HX-MS analysis revealed that the 21 VHHs recognized four distinct epitope subclusters (3.1-3.4). Sixteen of the 21 VHHs grouped within subcluster 3.1 and engage RTA α-helices C and G. Three VHHs grouped within subcluster 3.2, encompassing a-helices C and G, plus α-helix B. The single VHH in subcluster 3.3 engaged RTA α-helices B and G, while the epitope of the sole VHH defining subcluster 3.4 encompassed α-helices C and E, and β-strand h. Modeling these epitopes on the surface of RTA predicts that the 20 VHHs within subclusters 3.1-3.3 physically occlude RTA's active site cleft, while the single antibody in subcluster 3.4 associates on the active site's upper rim.
Collapse
|
8
|
Van Slyke G, Angalakurthi SK, Toth RT, Vance DJ, Rong Y, Ehrbar D, Shi Y, Middaugh CR, Volkin DB, Weis DD, Mantis NJ. Fine-Specificity Epitope Analysis Identifies Contact Points on Ricin Toxin Recognized by Protective Monoclonal Antibodies. Immunohorizons 2018; 2:262-273. [PMID: 30766971 DOI: 10.4049/immunohorizons.1800042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ricin is a fast-acting protein toxin classified by the Centers for Disease Control and Prevention as a biothreat agent. In this report, we describe five new mouse mAbs directed against an immunodominant region, so-called epitope cluster II, on the surface of ricin's ribosome-inactivating enzymatic subunit A (RTA). The five mAbs were tested alongside four previously described cluster II-specific mAbs for their capacity to passively protect mice against 10× LD50 ricin challenge by injection. Only three of the mAbs (LE4, PH12, and TB12) afforded protection over the 7-d study period. Neither binding affinity nor in vitro toxin-neutralizing activity could fully account for LE4, PH12, and TB12's potent in vivo activity relative to the other six mAbs. However, epitope mapping studies by hydrogen exchange-mass spectrometry revealed that LE4, PH12, and TB12 shared common contact points on RTA corresponding to RTA α-helices D and E and β-strands d and e located on the back side of RTA relative to the active site. The other six mAbs recognized overlapping epitopes on RTA, but none shared the same hydrogen exchange-mass spectrometry profile as LE4, PH12, and TB12. A high-density competition ELISA with a panel of ricin-specific, single-domain camelid Abs indicated that even though LE4, PH12, and TB12 make contact with similar secondary motifs, they likely approach RTA from different angles. These results underscore how subtle differences in epitope specificity can significantly impact Ab functionality in vivo. ImmunoHorizons, 2018, 2: 262-273.
Collapse
Affiliation(s)
- Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Siva Krishna Angalakurthi
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045
| | - Ronald T Toth
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Yinghui Rong
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Dylan Ehrbar
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Yuqi Shi
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - C Russell Middaugh
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045
| | - David B Volkin
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| |
Collapse
|
9
|
Rudolph MJ, Vance DJ, Kelow S, Angalakurthi SK, Nguyen S, Davis SA, Rong Y, Middaugh CR, Weis DD, Dunbrack R, Karanicolas J, Mantis NJ. Contribution of an unusual CDR2 element of a single domain antibody in ricin toxin binding affinity and neutralizing activity. Protein Eng Des Sel 2018; 31:277-287. [PMID: 30265352 PMCID: PMC6277176 DOI: 10.1093/protein/gzy022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/03/2018] [Indexed: 11/13/2022] Open
Abstract
Ricin toxin's enzymatic subunit (RTA) has been subjected to intensive B cell epitope mapping studies using a combination of competition ELISAs, hydrogen exchange-mass spectrometry and X-ray crystallography. Those studies identified four spatially distinct clusters (I-IV) of toxin-neutralizing epitopes on the surface of RTA. Here we describe A9, a new single domain camelid antibody (VHH) that was proposed to recognize a novel epitope on RTA that straddles clusters I and III. The X-ray crystal structure of A9 bound to RTA (2.6 Å resolution) revealed extensive antibody contact with RTA's β-strand h (732 Å2 buried surface area; BSA), along with limited engagement with α-helix D (90 Å2) and α-helix C (138 Å2). Collectively, these contacts explain the overlap between epitope clusters I and III, as identified by competition ELISA. However, considerable binding affinity, and, consequently, toxin-neutralizing activity of A9 is mediated by an unusual CDR2 containing five consecutive Gly residues that interact with α-helix B (82 Å2), a known neutralizing hotspot on RTA. Removal of a single Gly residue from the penta-glycine stretch in CDR2 reduced A9's binding affinity by 10-fold and eliminated toxin-neutralizing activity. Computational modeling indicates that removal of a Gly from CDR2 does not perturb contact with RTA per se, but results in the loss of an intramolecular hydrogen bond network involved in stabilizing CDR2 in the unbound state. These results reveal a novel configuration of a CDR2 element involved in neutralizing ricin toxin.
Collapse
Affiliation(s)
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simon Kelow
- Department of Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Siva Krishna Angalakurthi
- Department of Pharmaceutical Chemistry and Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS, USA
| | - Sophie Nguyen
- New York Structural Biology Center, New York, NY, USA
| | - Simon A Davis
- New York Structural Biology Center, New York, NY, USA
| | - Yinghui Rong
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry and Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS, USA
| | - David D Weis
- Department of Chemistry and Ralph Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Roland Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John Karanicolas
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
10
|
High-Definition Mapping of Four Spatially Distinct Neutralizing Epitope Clusters on RiVax, a Candidate Ricin Toxin Subunit Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00237-17. [PMID: 29046307 DOI: 10.1128/cvi.00237-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed β-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.
Collapse
|
11
|
Vance DJ, Tremblay JM, Rong Y, Angalakurthi SK, Volkin DB, Middaugh CR, Weis DD, Shoemaker CB, Mantis NJ. High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00236-17. [PMID: 29021300 PMCID: PMC5717184 DOI: 10.1128/cvi.00236-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538-36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.
Collapse
Affiliation(s)
- David J Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Yinghui Rong
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Siva Krishna Angalakurthi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, USA
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, USA
| |
Collapse
|
12
|
Bazzoli A, Vance DJ, Rudolph MJ, Rong Y, Angalakurthi SK, Toth RT, Middaugh CR, Volkin DB, Weis DD, Karanicolas J, Mantis NJ. Using homology modeling to interrogate binding affinity in neutralization of ricin toxin by a family of single domain antibodies. Proteins 2017; 85:1994-2008. [PMID: 28718923 DOI: 10.1002/prot.25353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022]
Abstract
In this report we investigated, within a group of closely related single domain camelid antibodies (VH Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like VH Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1R29G mutant was largely devoid of toxin-neutralizing activity (TNA). However, the TNA of the V1C7G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen-deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function.
Collapse
Affiliation(s)
- Andrea Bazzoli
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, 66045.,Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, 66047
| | - David J Vance
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, New York, 12208
| | | | - Yinghui Rong
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, New York, 12208
| | - Siva Krishna Angalakurthi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66045
| | - Ronald T Toth
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66045
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66045
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66045
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045
| | - John Karanicolas
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, 66045.,Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045.,Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111
| | - Nicholas J Mantis
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, New York, 12208
| |
Collapse
|
13
|
Structural Characterization and Physicochemical Stability Profile of a Double Mutant Heat Labile Toxin Protein Based Adjuvant. J Pharm Sci 2017; 106:3474-3485. [PMID: 28780391 PMCID: PMC5690273 DOI: 10.1016/j.xphs.2017.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
A novel protein adjuvant double-mutant Escherichia coli heat-labile toxin, LT (R192G/L211A) or dmLT, is in preclinical and early clinical development with various vaccine candidates. Structural characterization and formulation development of dmLT will play a key role in its successful process development, scale-up/transfer, and commercial manufacturing. This work describes extensive analytical characterization of structural integrity and physicochemical stability profile of dmLT from a lyophilized clinical formulation. Reconstituted dmLT contained a heterogeneous mixture of intact holotoxin (AB5, ∼75%) and free B5 subunit (∼25%) as assessed by analytical ultracentrifugation and hydrophobic interaction chromatography. Intact mass spectrometry (MS) analysis revealed presence of Lys84 glycation near the native sugar-binding site in dmLT, and forced degradation studies using liquid chromatography-MS peptide mapping demonstrated specific Asn deamidation and Met oxidation sites. Using multiple biophysical measurements, dmLT was found most stable between pH 6.5 and 7.5 and at temperatures ≤50°C. In addition, soluble aggregates and particle formation were observed upon shaking stress. By identifying the physicochemical degradation pathways of dmLT using newly developed stability-indicating analytical methods from this study, we aim at developing more stable candidate formulations of dmLT that will minimize the formation of degradants and improve storage stability, as both a frozen bulk substance and eventually as a liquid final dosage form.
Collapse
|
14
|
Beghein E, Gettemans J. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol 2017; 8:771. [PMID: 28725224 PMCID: PMC5495861 DOI: 10.3389/fimmu.2017.00771] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.
Collapse
Affiliation(s)
- Els Beghein
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Rudolph MJ, Vance DJ, Cassidy MS, Rong Y, Mantis NJ. Structural Analysis of Single Domain Antibodies Bound to a Second Neutralizing Hot Spot on Ricin Toxin's Enzymatic Subunit. J Biol Chem 2017; 292:872-883. [PMID: 27903650 PMCID: PMC5247660 DOI: 10.1074/jbc.m116.758102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Ricin toxin is a heterodimer consisting of RTA, a ribosome-inactivating protein, and RTB, a lectin that facilitates receptor-mediated uptake into mammalian cells. In previous studies, we demonstrated that toxin-neutralizing antibodies target four spatially distinct hot spots on RTA, which we refer to as epitope clusters I-IV. In this report, we identified and characterized three single domain camelid antibodies (VHH) against cluster II. One of these VHHs, V5E1, ranks as one of the most potent ricin-neutralizing antibodies described to date. We solved the X-ray crystal structures of each of the three VHHs (E1, V1C7, and V5E1) in complex with RTA. V5E1 buries a total of 1,133 Å2 of surface area on RTA and makes primary contacts with α-helix A (residues 18-32), α-helix F (182-194), as well as the F-G loop. V5E1, by virtue of complementarity determining region 3 (CDR3), may also engage with RTB and potentially interfere with the high affinity galactose-recognition element that plays a critical role in toxin attachment to cell surfaces and intracellular trafficking. The two other VHHs, E1 and V1C7, bind epitopes adjacent to V5E1 but display only weak toxin neutralizing activity, thereby providing structural insights into specific residues within cluster II that may be critical contact points for toxin inactivation.
Collapse
Affiliation(s)
- Michael J Rudolph
- From the New York Structural Biology Center, New York, New York 10027,
| | - David J Vance
- the Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Michael S Cassidy
- From the New York Structural Biology Center, New York, New York 10027
| | - Yinghui Rong
- the Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
| | - Nicholas J Mantis
- the Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, and
- the Department of Biomedical Sciences, University at Albany, Albany, New York 12201
| |
Collapse
|
16
|
Sarkes DA, Hurley MM, Stratis-Cullum DN. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Molecules 2016; 21:E1504. [PMID: 27834872 PMCID: PMC6272918 DOI: 10.3390/molecules21111504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide-protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Margaret M Hurley
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Dimitra N Stratis-Cullum
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| |
Collapse
|