1
|
van Keulen SC, Martin J, Colizzi F, Frezza E, Trpevski D, Diaz NC, Vidossich P, Rothlisberger U, Hellgren Kotaleski J, Wade RC, Carloni P. Multiscale molecular simulations to investigate adenylyl cyclase‐based signaling in the brain. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siri C. van Keulen
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Science for Life, Faculty of Science – Chemistry Utrecht University Utrecht The Netherlands
| | - Juliette Martin
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry University of Lyon Lyon France
| | - Francesco Colizzi
- Molecular Ocean Laboratory, Department of Marine Biology and Oceanography Institute of Marine Sciences, ICM‐CSIC Barcelona Spain
| | - Elisa Frezza
- Université Paris Cité, CiTCoM, CNRS Paris France
| | - Daniel Trpevski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm
| | - Nuria Cirauqui Diaz
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry University of Lyon Lyon France
| | - Pietro Vidossich
- Molecular Modeling and Drug Discovery Lab Istituto Italiano di Tecnologia Genoa Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm
- Department of Neuroscience Karolinska Institute Stockholm
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Center for Molecular Biology (ZMBH), DKFZ‐ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| | - Paolo Carloni
- Institute for Neuroscience and Medicine (INM‐9) and Institute for Advanced Simulations (IAS‐5) “Computational biomedicine” Forschungszentrum Jülich Jülich Germany
- INM‐11 JARA‐Institute: Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
2
|
Kashif M, Asalam M, Al Shehri SS, Kumar B, Singh N, Akhtar MS. Recombinant expression and biophysical characterization of Mrt4 protein that involved in mRNA turnover and ribosome assembly from Saccharomyces cerevisiae. Bioengineered 2022; 13:9103-9113. [PMID: 35387555 PMCID: PMC9161856 DOI: 10.1080/21655979.2022.2055951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The mRNA turnover and ribosome assembly are facilitated by Mrt4 protein from Saccharomyces cerevisiae. In present study, we are reporting the cloning, expression and homogeneous purification of recombinant Mrt4. Mrt4 is a 236-amino-acid-long nuclear protein that plays a very crucial role in mRNA turnover and ribosome assembly during the translation process. mrt4 gene was amplified by polymerase chain reaction and cloned in expression vector pET23a (+) under the bacteriophage T7-inducible promoter and lac operator. Furthermore, protein was purified to homogeneity using immobilized metal affinity chromatography (IMAC) and its homogeneous purification was further validated by immunoblotting with anti-His antibody. The far-UV CD spectra represent that Mrt4 has a typical α helix with characteristic negative minima at 222 and 208 nm. At physiological pH, the fluorescence spectra and CD spectra showed properly folded tertiary and secondary structures of Mrt4, respectively. Saccharomyces Mrt4 protein possesses putative bipartite NLS (nuclear localization signal) at the N-terminal part followed by two well-conserved domains, rRNA-binding domains and translation factor (TF) binding domain. PIPSA analysis evaluates electrostatic interaction properties of proteins and concluded that Mrt4 protein can be used as a fingerprint for classifying Mrt4-like mRNA turnover protein from various species. The availability of an ample amount of protein may help in its biochemical and biophysical characterization, crystallization and identification of new interacting partners of Mrt4.
Collapse
Affiliation(s)
- Mohd Kashif
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Asalam
- MSB Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saad S Al Shehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences,Taif University, Taif, Saudi Arabia
| | - Bhupendra Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neha Singh
- MSB Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Md Sohail Akhtar
- MSB Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Bhagirath AY, Bhatia V, Medapati MR, Singh N, Hinton M, Chelikani P, Dakshinamurti S. Critical cysteines in the functional interaction of adenylyl cyclase isoform 6 with Gαs. FASEB Bioadv 2021; 4:180-196. [PMID: 35664968 PMCID: PMC9159366 DOI: 10.1096/fba.2021-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Activation of adenylyl cyclases (ACs) by G‐protein Gαs catalyzes the production of cyclic adenosine monophosphate (cAMP), a key second messenger that regulates diverse physiological responses. There are 10 AC isoforms present in humans, with AC5 and AC6 proposed to play vital roles in cardiac function. We have previously shown that under hypoxic conditions, AC6 is amenable to post‐translational modification by nitrosylation, resulting in decreased AC catalytic activity. Using a computational model of the AC6–Gαs complex, we predicted key nitrosylation‐amenable cysteine residues involved in the interaction of AC6 with Gαs and pursued a structure–function analysis of these cysteine residues in both AC6 and Gαs. Our results based on site‐directed mutagenesis of AC6 and Gαs, a constitutively active Gαs, AC activity, and live cell intracellular cAMP assays suggest that Cys1004 in AC6 (subunit C2) and Cys237 in Gαs are present at the AC–Gαs interface and are important for the activation of AC6 by Gαs. We further provide mechanistic evidence to show that mutating Cys 1004 in the second catalytic domain of AC6 makes it amenable to inhibition by Gαi, which may account for decreased functional activity of AC6 when this residue is unavailable.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | - Vikram Bhatia
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | | | - Nisha Singh
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | - Martha Hinton
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg Manitoba Canada
| | - Prashen Chelikani
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Oral Biology University of Manitoba Winnipeg Manitoba Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Theme Children's Hospital Research Institute of Manitoba (CHRIM) Winnipeg Manitoba Canada
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg Manitoba Canada
- Department of Pediatrics University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
4
|
Nerli S, Sgourakis NG. Structure-Based Modeling of SARS-CoV-2 Peptide/HLA-A02 Antigens. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:553478. [PMID: 35047875 PMCID: PMC8757863 DOI: 10.3389/fmedt.2020.553478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2-specific CD4 and CD8 T cells have been shown to be present in individuals with acute, mild, and asymptomatic Coronavirus disease (COVID-19). Toward the development of diagnostic and therapeutic tools to fight COVID-19, it is important to predict and characterize T cell epitopes expressed by SARS-CoV-2. Here, we use RosettaMHC, a comparative modeling approach which leverages existing structures of peptide/MHC complexes available in the Protein Data Bank, to derive accurate 3D models for putative SARS-CoV-2 CD8 epitopes. We outline an application of our method to model 8-10 residue epitopic peptides predicted to bind to the common allele HLA-A*02:01, and we make our models publicly available through an online database (https://rosettamhc.chemistry.ucsc.edu). We further compare electrostatic surfaces with models of homologous peptide/HLA-A*02:01 complexes from human common cold coronavirus strains to identify epitopes which may be recognized by a shared pool of cross-reactive TCRs. As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models can be used to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Bruce NJ, Narzi D, Trpevski D, van Keulen SC, Nair AG, Röthlisberger U, Wade RC, Carloni P, Hellgren Kotaleski J. Regulation of adenylyl cyclase 5 in striatal neurons confers the ability to detect coincident neuromodulatory signals. PLoS Comput Biol 2019; 15:e1007382. [PMID: 31665146 PMCID: PMC6821081 DOI: 10.1371/journal.pcbi.1007382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/05/2019] [Indexed: 02/04/2023] Open
Abstract
Long-term potentiation and depression of synaptic activity in response to stimuli is a key factor in reinforcement learning. Strengthening of the corticostriatal synapses depends on the second messenger cAMP, whose synthesis is catalysed by the enzyme adenylyl cyclase 5 (AC5), which is itself regulated by the stimulatory Gαolf and inhibitory Gαi proteins. AC isoforms have been suggested to act as coincidence detectors, promoting cellular responses only when convergent regulatory signals occur close in time. However, the mechanism for this is currently unclear, and seems to lie in their diverse regulation patterns. Despite attempts to isolate the ternary complex, it is not known if Gαolf and Gαi can bind to AC5 simultaneously, nor what activity the complex would have. Using protein structure-based molecular dynamics simulations, we show that this complex is stable and inactive. These simulations, along with Brownian dynamics simulations to estimate protein association rates constants, constrain a kinetic model that shows that the presence of this ternary inactive complex is crucial for AC5's ability to detect coincident signals, producing a synergistic increase in cAMP. These results reveal some of the prerequisites for corticostriatal synaptic plasticity, and explain recent experimental data on cAMP concentrations following receptor activation. Moreover, they provide insights into the regulatory mechanisms that control signal processing by different AC isoforms.
Collapse
Affiliation(s)
- Neil J. Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Heidelberg, Germany
| | - Daniele Narzi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Trpevski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Siri C. van Keulen
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Anu G. Nair
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ursula Röthlisberger
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Paolo Carloni
- Department of Physics and Department of Neurobiology, RWTH Aachen University,Aachen, Germany
- Institute for Neuroscience and Medicine (INM)-11, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Jülich, Jülich, Germany
- Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich, Germany
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|