• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635019)   Today's Articles (6908)   Subscriber (50000)
For: Zheng W. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling. Proteins 2017;85:342-353. [PMID: 27936513 DOI: 10.1002/prot.25229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/31/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Number Cited by Other Article(s)
1
Allemailem KS. Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. Int J Nanomedicine 2024;19:1125-1143. [PMID: 38344439 PMCID: PMC10859101 DOI: 10.2147/ijn.s453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024]  Open
2
Puppulin L, Ishikawa J, Sumino A, Marchesi A, Flechsig H, Umeda K, Kodera N, Nishimasu H, Shibata M. Dynamics of Target DNA Binding and Cleavage by Staphylococcus aureus Cas9 as Revealed by High-Speed Atomic Force Microscopy. ACS NANO 2023;17:4629-4641. [PMID: 36848598 DOI: 10.1021/acsnano.2c10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
3
Bhattacharya S, Satpati P. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS OMEGA 2023;8:1817-1837. [PMID: 36687047 PMCID: PMC9850488 DOI: 10.1021/acsomega.2c05583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
4
Shor O, Rabinowitz R, Offen D, Benninger F. Computational normal mode analysis accurately replicates the activity and specificity profiles of CRISPR-Cas9 and high-fidelity variants. Comput Struct Biotechnol J 2022;20:2013-2019. [PMID: 35521548 PMCID: PMC9062324 DOI: 10.1016/j.csbj.2022.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/01/2022]  Open
5
Kumar A, Satpati P. Divalent-Metal-Ion Selectivity of the CRISPR-Cas System-Associated Cas1 Protein: Insights from Classical Molecular Dynamics Simulations and Electronic Structure Calculations. J Phys Chem B 2021;125:11943-11954. [PMID: 34694813 DOI: 10.1021/acs.jpcb.1c07744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
6
Zheng W. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling. Proteins 2021;89:416-426. [PMID: 33244830 DOI: 10.1002/prot.26027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/26/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
7
Coarse-Grained Models of RNA Nanotubes for Large Time Scale Studies in Biomedical Applications. Biomedicines 2020;8:biomedicines8070195. [PMID: 32640509 PMCID: PMC7400038 DOI: 10.3390/biomedicines8070195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 07/04/2020] [Indexed: 01/13/2023]  Open
8
Ray A, Di Felice R. Protein-Mutation-Induced Conformational Changes of the DNA and Nuclease Domain in CRISPR/Cas9 Systems by Molecular Dynamics Simulations. J Phys Chem B 2020;124:2168-2179. [PMID: 32079396 DOI: 10.1021/acs.jpcb.9b07722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
9
Sanbonmatsu KY. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 2019;55:104-113. [PMID: 31125796 DOI: 10.1016/j.sbi.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
10
Wan H, Li J, Chang S, Lin S, Tian Y, Tian X, Wang M, Hu J. Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations. Sci Rep 2019;9:3188. [PMID: 30816277 PMCID: PMC6395717 DOI: 10.1038/s41598-019-39616-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022]  Open
11
Directed evolution studies of a thermophilic Type II-C Cas9. Methods Enzymol 2018;616:265-288. [PMID: 30691646 DOI: 10.1016/bs.mie.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
12
Osuka S, Isomura K, Kajimoto S, Komori T, Nishimasu H, Shima T, Nureki O, Uemura S. Real-time observation of flexible domain movements in CRISPR-Cas9. EMBO J 2018;37:embj.201796941. [PMID: 29650679 PMCID: PMC5978321 DOI: 10.15252/embj.201796941] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/24/2022]  Open
13
Shvets AA, Kolomeisky AB. Mechanism of Genome Interrogation: How CRISPR RNA-Guided Cas9 Proteins Locate Specific Targets on DNA. Biophys J 2017;113:1416-1424. [PMID: 28978436 DOI: 10.1016/j.bpj.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]  Open
14
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Proc Natl Acad Sci U S A 2017;114:7260-7265. [PMID: 28652374 PMCID: PMC5514767 DOI: 10.1073/pnas.1707645114] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA