1
|
Tammara V, Das A. A Self-Consistent Molecular Mechanism of β 2-Microglobulin Aggregation. J Phys Chem B 2024; 128:12425-12442. [PMID: 39656191 DOI: 10.1021/acs.jpcb.4c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Despite the consensus on the origin of dialysis-related amyloidosis (DRA) being β2-microglobulin (β2m) aggregation, the debate on the underlying mechanism persists because of the continuous emergence of β2m variant- and pH-dependent contradictory results. By characterizing the native monomeric (initiation) and aggregated fibrillar (termination) states of β2m via a combination of two enhanced sampling approaches, we here propose a mechanism that explains the heterogeneous behavior of wild-type (WT) and pathogenic (V27M and D76N) β2m variants in physiological and disease-pertinent acidic pH environments. It appears that the higher retainment of monomeric native folds at neutral pH (native-like) distinguishes pathogenic β2m mutants from the WT (moderate loss). However, at acidic pH, all three variants behave similarly in producing a substantial amount of partially unfolded states (conformational switch, propensity), though with different extents (WT < V27M < D76N). Whereas at the fibrillar end, all β2m variants display a pH-dependent protofilament separation pathway and a higher protofilament binding affinity (stability) at acidic pH, where the relative order of binding affinity (WT < V27M < D76N) remains consistent with pH modulation. Combining these observations, we conclude that β2m variants possibly shift from native-like aggregation to conformational switch-initiated fibrillation as the pH is altered from neutral to acidic. The combined propensity-stability approach based on the initiation and termination points of β2m aggregation not only assists us in deciphering the mechanism but also emphasizes the protagonistic roles of both terminal points in the overall aggregation process.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Oliveira NFB, Rodrigues FEP, Vitorino JNM, Loureiro RJS, Faísca PFN, Machuqueiro M. Predicting stable binding modes from simulated dimers of the D76N mutant of β 2-microglobulin. Comput Struct Biotechnol J 2021; 19:5160-5169. [PMID: 34630936 PMCID: PMC8473664 DOI: 10.1016/j.csbj.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
β2m D76N mutant populates an aggregation-prone monomer (I2) with unstructured termini. MD and MM-PBSA indicate that I2 dimers are stabilized by hydrophobic interactions. The termini regions and BC- and DE-loops are prevalent in the most stable interfaces. The most stable dimer has a limited growth potential without structural rearrangement.
The D76N mutant of the β2m protein is a biologically motivated model system to study protein aggregation. There is strong experimental evidence, supported by molecular simulations, that D76N populates a highly dynamic conformation (which we originally named I2) that exposes aggregation-prone patches as a result of the detachment of the two terminal regions. Here, we use Molecular Dynamics simulations to study the stability of an ensemble of dimers of I2 generated via protein–protein docking. MM-PBSA calculations indicate that within the ensemble of investigated dimers the major contribution to interface stabilization at physiological pH comes from hydrophobic interactions between apolar residues. Our structural analysis also reveals that the interfacial region associated with the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminus, as well residues from the BC- and DE-loops. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops. By focusing on the most stable binding modes, we used a simple geometric rule to propagate the corresponding dimer interfaces. We found that, in the absence of any kind of structural rearrangement occurring at an early stage of the oligomerization pathway, some interfaces drive a self-limited growth process, while others can be propagated indefinitely allowing the formation of long, polymerized chains. In particular, the interfacial region of the most stable binding mode reported here falls in the class of self-limited growth.
Collapse
Affiliation(s)
- Nuno F B Oliveira
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - Filipe E P Rodrigues
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - João N M Vitorino
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - Rui J S Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Patrícia F N Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Physics, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| |
Collapse
|
4
|
Cornwell O, Ault JR, Bond NJ, Radford SE, Ashcroft AE. Investigation of D76N β 2-Microglobulin Using Protein Footprinting and Structural Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1583-1592. [PMID: 33586970 PMCID: PMC9282677 DOI: 10.1021/jasms.0c00438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
NMR studies and X-ray crystallography have shown that the structures of the 99-residue amyloidogenic protein β2-microglobulin (β2m) and its more aggregation-prone variant, D76N, are indistinguishable, and hence, the reason for the striking difference in their aggregation propensities remains elusive. Here, we have employed two protein footprinting methods, hydrogen-deuterium exchange (HDX) and fast photochemical oxidation of proteins (FPOP), in conjunction with ion mobility-mass spectrometry, to probe the differences in conformational dynamics of the two proteins. Using HDX-MS, a clear difference in HDX protection is observed between these two proteins in the E-F loop (residues 70-77) which contains the D76N substitution, with a significantly higher deuterium uptake being observed in the variant protein. Conversely, following FPOP-MS only minimal differences in the level of oxidation between the two proteins are observed in the E-F loop region, suggesting only modest side-chain movements in that area. Together the HDX-MS and FPOP-MS data suggest that a tangible perturbation to the hydrogen-bonding network in the E-F loop has taken place in the D76N variant and furthermore illustrate the benefit of using multiple complementary footprinting methods to address subtle, but possibly biologically important, differences between highly similar proteins.
Collapse
Affiliation(s)
- Owen Cornwell
- Biopharmaceuticals
R & D, AstraZeneca, Granta Park, Cambridge CB21 6GP, U.K.
| | - James R. Ault
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nicholas J. Bond
- Biopharmaceuticals
R & D, AstraZeneca, Granta Park, Cambridge CB21 6GP, U.K.
| | - Sheena E. Radford
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Alison E. Ashcroft
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Morand J, Nunes A, Faísca PFN. The folding space of protein β2-microglobulin is modulated by a single disulfide bridge. Phys Biol 2021; 18. [PMID: 34098544 DOI: 10.1088/1478-3975/ac08ec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Protein beta-2-microglobulin (β2m) is classically considered the causative agent of dialysis related amyloidosis, a conformational disorder that affects patients undergoing long-term hemodialysis. The wild type (WT) form, the ΔN6 structural variant, and the D76N mutant have been extensively used as model systems ofβ2m aggregation. In all of them, the native structure is stabilized by a disulfide bridge between the sulphur atoms of the cysteine residues 25 (at B strand) and 80 (at F strand), which has been considered fundamental inβ2m fibrillogenesis. Here, we use extensive discrete molecular dynamics simulations of a full atomistic structure-based model to explore the role of this disulfide bridge as a modulator of the folding space ofβ2m. In particular, by considering different models for the disulfide bridge, we explore the thermodynamics of the folding transition, and the formation of intermediate states that may have the potential to trigger the aggregation cascade. Our results show that the dissulfide bridge affects folding transition and folding thermodynamics of the considered model systems, although to different extents. In particular, when the interaction between the sulphur atoms is stabilized relative to the other intramolecular interactions, or even locked (i.e. permanently established), the WT form populates an intermediate state featuring a well preserved core and two unstructured termini, which was previously detected only for the D76N mutant. The formation of this intermediate state may have important implications in our understanding ofβ2m fibrillogenesis.
Collapse
Affiliation(s)
- Jules Morand
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, CampoGrande, Ed. C8, 1749-016 Lisboa, Portugal
| | - Ana Nunes
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, CampoGrande, Ed. C8, 1749-016 Lisboa, Portugal
| | - Patrícia F N Faísca
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, CampoGrande, Ed. C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Ermakova EA, Makshakova ON, Zuev YF, Sedov IA. Fibril fragments from the amyloid core of lysozyme: An accelerated molecular dynamics study. J Mol Graph Model 2021; 106:107917. [PMID: 33887522 DOI: 10.1016/j.jmgm.2021.107917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Protein aggregation and formation of amyloid fibrils are associated with many diseases and present a ubiquitous problem in protein science. Hen egg white lysozyme (HEWL) can form fibrils both from the full length protein and from its fragments. In the present study, we simulated unfolding of the amyloidogenic fragment of HEWL encompassing residues 49-101 to study the conformational aspects of amyloidogenesis. The accelerated molecular dynamics approach was used to speed up the sampling of the fragment conformers under enhanced temperature. Analysis of conformational transformation and intermediate structures was performed. During the unfolding, the novel short-living and long-living β-structures are formed along with the unstructured random coils. Such β-structure enriched monomers can interact with each other and propagate into fibril-like forms. The stability of oligomers assembled from these monomers was evaluated in the course of MD simulations with explicit water. The residues playing a key role in fibril stabilization were determined. The work provides new insights into the processes occurring at the early stages of amyloid fibril assembly.
Collapse
Affiliation(s)
- Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia; Sirius University of Science and Technology, Olympic Ave, 1, 354340, Sochi, Russia.
| | - Olga N Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia; Sirius University of Science and Technology, Olympic Ave, 1, 354340, Sochi, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Igor A Sedov
- Kazan Federal University, Kremlevskaya Str.,18, 420111, Kazan, Russia; Sirius University of Science and Technology, Olympic Ave, 1, 354340, Sochi, Russia
| |
Collapse
|
7
|
Loureiro RJS, Faísca PFN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biosci 2020; 7:578433. [PMID: 33134317 PMCID: PMC7550760 DOI: 10.3389/fmolb.2020.578433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Protein β2-microglobulin is the causing agent of two amyloidosis, dialysis related amyloidosis (DRA), affecting the bones and cartilages of individuals with chronic renal failure undergoing long-term hemodialysis, and a systemic amyloidosis, found in one French family, which impairs visceral organs. The protein’s small size and its biomedical significance attracted the attention of theoretical scientists, and there are now several studies addressing its aggregation mechanism in the context of molecular simulations. Here, we review the early phase of β2-microglobulin aggregation, by focusing on the identification and structural characterization of monomers with the ability to trigger aggregation, and initial small oligomers (dimers, tetramers, hexamers etc.) formed in the so-called nucleation phase. We focus our analysis on results from molecular simulations and integrate our views with those coming from in vitro experiments to provide a broader perspective of this interesting field of research. We also outline directions for future computer simulation studies.
Collapse
Affiliation(s)
- Rui J S Loureiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Patrícia F N Faísca
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal.,Department of Physics, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. The role of the I T-state in D76N β 2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? J Biol Chem 2020; 295:12474-12484. [PMID: 32661194 PMCID: PMC7458819 DOI: 10.1074/jbc.ra120.014901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-β2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-β2m aggregation in vitro. However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m but slows aggregation of D76N-β2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-β2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.
Collapse
Affiliation(s)
- Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Loosening of Side-Chain Packing Associated with Perturbations in Peripheral Dynamics Induced by the D76N Mutation of β 2-Microglobulin Revealed by Pressure-NMR and Molecular Dynamic Simulations. Biomolecules 2019; 9:biom9090491. [PMID: 31527472 PMCID: PMC6769805 DOI: 10.3390/biom9090491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023] Open
Abstract
β2-Microglobulin (β2m) is the causative protein of dialysis-related amyloidosis, and its D76N variant is less stable and more prone to aggregation. Since their crystal structures are indistinguishable from each other, enhanced amyloidogenicity induced by the mutation may be attributed to changes in the structural dynamics of the molecule. We examined pressure and mutation effects on the β2m molecule by NMR and MD simulations, and found that the mutation induced the loosening of the inter-sheet packing of β2m, which is relevant to destabilization and subsequent amyloidogenicity. On the other hand, this loosening was coupled with perturbed dynamics at some peripheral regions. The key result for this conclusion was that both the mutation and pressure induced similar reductions in the mobility of these residues, suggesting that there is a common mechanism underlying the suppression of inherent fluctuations in the β2m molecule. Analyses of data obtained under high pressure conditions suggested that the network of dynamically correlated residues included not only the mutation site, but also distal residues, such as those of the C- and D-strands. Reductions in these local dynamics correlated with the loosening of inter-sheet packing.
Collapse
|
10
|
J S Loureiro R, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, F N Faísca P. The Early Phase of β2m Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the ΔN6 Variant. Biomolecules 2019; 9:biom9080366. [PMID: 31416179 PMCID: PMC6722664 DOI: 10.3390/biom9080366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human β2-microglobulin (b2m) protein is classically associated with dialysis-related amyloidosis (DRA). Recently, the single point mutant D76N was identified as the causative agent of a hereditary systemic amyloidosis affecting visceral organs. To get insight into the early stage of the β2m aggregation mechanism, we used molecular simulations to perform an in depth comparative analysis of the dimerization phase of the D76N mutant and the ΔN6 variant, a cleaved form lacking the first six N-terminal residues, which is a major component of ex vivo amyloid plaques from DRA patients. We also provide first glimpses into the tetramerization phase of D76N at physiological pH. Results from extensive protein–protein docking simulations predict an essential role of the C- and N-terminal regions (both variants), as well as of the BC-loop (ΔN6 variant), DE-loop (both variants) and EF-loop (D76N mutant) in dimerization. The terminal regions are more relevant under acidic conditions while the BC-, DE- and EF-loops gain importance at physiological pH. Our results recapitulate experimental evidence according to which Tyr10 (A-strand), Phe30 and His31 (BC-loop), Trp60 and Phe62 (DE-loop) and Arg97 (C-terminus) act as dimerization hot-spots, and further predict the occurrence of novel residues with the ability to nucleate dimerization, namely Lys-75 (EF-loop) and Trp-95 (C-terminus). We propose that D76N tetramerization is mainly driven by the self-association of dimers via the N-terminus and DE-loop, and identify Arg3 (N-terminus), Tyr10, Phe56 (D-strand) and Trp60 as potential tetramerization hot-spots.
Collapse
Affiliation(s)
- Rui J S Loureiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Patrícia F N Faísca
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
11
|
|
12
|
Anti-Correlation between the Dynamics of the Active Site Loop and C-Terminal Tail in Relation to the Homodimer Asymmetry of the Mouse Erythroid 5-Aminolevulinate Synthase. Int J Mol Sci 2018; 19:ijms19071899. [PMID: 29958424 PMCID: PMC6073955 DOI: 10.3390/ijms19071899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Biosynthesis of heme represents a complex process that involves multiple stages controlled by different enzymes. The first of these proteins is a pyridoxal 5′-phosphate (PLP)-dependent homodimeric enzyme, 5-aminolevulinate synthase (ALAS), that catalyzes the rate-limiting step in heme biosynthesis, the condensation of glycine with succinyl-CoA. Genetic mutations in human erythroid-specific ALAS (ALAS2) are associated with two inherited blood disorders, X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP). XLSA is caused by diminished ALAS2 activity leading to decreased ALA and heme syntheses and ultimately ineffective erythropoiesis, whereas XLPP results from “gain-of-function” ALAS2 mutations and consequent overproduction of protoporphyrin IX and increase in Zn2+-protoporphyrin levels. All XLPP-linked mutations affect the intrinsically disordered C-terminal tail of ALAS2. Our earlier molecular dynamics (MD) simulation-based analysis showed that the activity of ALAS2 could be regulated by the conformational flexibility of the active site loop whose structural features and dynamics could be changed due to mutations. We also revealed that the dynamic behavior of the two protomers of the ALAS2 dimer differed. However, how the structural dynamics of ALAS2 active site loop and C-terminal tail dynamics are related to each other and contribute to the homodimer asymmetry remained unanswered questions. In this study, we used bioinformatics and computational biology tools to evaluate the role(s) of the C-terminal tail dynamics in the structure and conformational dynamics of the murine ALAS2 homodimer active site loop. To assess the structural correlation between these two regions, we analyzed their structural displacements and determined their degree of correlation. Here, we report that the dynamics of ALAS2 active site loop is anti-correlated with the dynamics of the C-terminal tail and that this anti-correlation can represent a molecular basis for the functional and dynamic asymmetry of the ALAS2 homodimer.
Collapse
|