1
|
Škrbić T, Giacometti A, Hoang TX, Maritan A, Banavar JR. Amino-Acid Characteristics in Protein Native State Structures. Biomolecules 2024; 14:805. [PMID: 39062519 PMCID: PMC11274641 DOI: 10.3390/biom14070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The molecular machines of life, proteins, are made up of twenty kinds of amino acids, each with distinctive side chains. We present a geometrical analysis of the protrusion statistics of side chains in more than 4000 high-resolution protein structures. We employ a coarse-grained representation of the protein backbone viewed as a linear chain of Cα atoms and consider just the heavy atoms of the side chains. We study the large variety of behaviors of the amino acids based on both rudimentary structural chemistry as well as geometry. Our geometrical analysis uses a backbone Frenet coordinate system for the common study of all amino acids. Our analysis underscores the richness of the repertoire of amino acids that is available to nature to design protein sequences that fit within the putative native state folds.
Collapse
Affiliation(s)
- Tatjana Škrbić
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Campus Scientifico, Via Torino 155, 30170 Venice Mestre, Italy;
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA;
| | - Achille Giacometti
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Campus Scientifico, Via Torino 155, 30170 Venice Mestre, Italy;
- European Centre for Living Technology (ECLT), Ca’ Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Trinh X. Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, 10 DaoTan, Ba Dinh, Hanoi 11108, Vietnam;
| | - Amos Maritan
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy;
| | - Jayanth R. Banavar
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA;
| |
Collapse
|
2
|
Grigas AT, Fisher A, Shattuck MD, O'Hern CS. Connecting polymer collapse and the onset of jamming. Phys Rev E 2024; 109:034406. [PMID: 38632799 DOI: 10.1103/physreve.109.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Previous studies have shown that the interiors of proteins are densely packed, reaching packing fractions that are as large as those found for static packings of individual amino-acid-shaped particles. How can the interiors of proteins take on such high packing fractions given that amino acids are connected by peptide bonds and many amino acids are hydrophobic with attractive interactions? We investigate this question by comparing the structural and mechanical properties of collapsed attractive disk-shaped bead-spring polymers to those of three reference systems: static packings of repulsive disks, of attractive disks, and of repulsive disk-shaped bead-spring polymers. We show that the attractive systems quenched to temperatures below the glass transition T≪T_{g} and static packings of both repulsive disks and bead-spring polymers possess similar interior packing fractions. Previous studies have shown that static packings of repulsive disks are isostatic at jamming onset, i.e., the number of interparticle contacts N_{c} matches the number of degrees of freedom, which strongly influences their mechanical properties. We find that repulsive polymer packings are hypostatic at jamming onset (i.e., with fewer contacts than degrees of freedom) but are effectively isostatic when including stabilizing quartic modes, which give rise to quartic scaling of the potential energy with displacements along these modes. While attractive disk and polymer packings are often considered hyperstatic with excess contacts over the isostatic number, we identify a definition for interparticle contacts for which they can also be considered as effectively isostatic. As a result, we show that the mechanical properties (e.g., scaling of the potential energy with excess contact number and low-frequency contribution to the density of vibrational modes) of weakly attractive disk and polymer packings are similar to those of isostatic repulsive disk and polymer packings. Our results demonstrate that static packings generated via attractive collapse or compression of repulsive particles possess similar structural and mechanical properties.
Collapse
Affiliation(s)
- Alex T Grigas
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Aliza Fisher
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
3
|
Grigas AT, Liu Z, Regan L, O'Hern CS. Core packing of well-defined X-ray and NMR structures is the same. Protein Sci 2022; 31:e4373. [PMID: 35900019 PMCID: PMC9277709 DOI: 10.1002/pro.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022]
Abstract
Numerous studies have investigated the differences and similarities between protein structures determined by solution NMR spectroscopy and those determined by X-ray crystallography. A fundamental question is whether any observed differences are due to differing methodologies or to differences in the behavior of proteins in solution versus in the crystalline state. Here, we compare the properties of the hydrophobic cores of high-resolution protein crystal structures and those in NMR structures, determined using increasing numbers and types of restraints. Prior studies have reported that many NMR structures have denser cores compared with those of high-resolution X-ray crystal structures. Our current work investigates this result in more detail and finds that these NMR structures tend to violate basic features of protein stereochemistry, such as small non-bonded atomic overlaps and few Ramachandran and sidechain dihedral angle outliers. We find that NMR structures solved with more restraints, and which do not significantly violate stereochemistry, have hydrophobic cores that have a similar size and packing fraction as their counterparts determined by X-ray crystallography at high resolution. These results lead us to conclude that, at least regarding the core packing properties, high-quality structures determined by NMR and X-ray crystallography are the same, and the differences reported earlier are most likely a consequence of methodology, rather than fundamental differences between the protein in the two different environments.
Collapse
Affiliation(s)
- Alex T. Grigas
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
| | - Zhuoyi Liu
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
| | - Lynne Regan
- Institute of Quantitative Biology, Biochemistry and BiotechnologyCentre for Synthetic and Systems Biology, School of Biological Sciences, University of EdinburghEdinburghUK
| | - Corey S. O'Hern
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Department of PhysicsYale UniversityNew HavenConnecticutUSA
- Department of Applied PhysicsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
4
|
Beytur S. Marker residue types at the structural regions of transmembrane alpha-helical and beta-barrel interfaces. Proteins 2021; 89:1145-1157. [PMID: 33890696 DOI: 10.1002/prot.26087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/11/2022]
Abstract
Membrane proteins play a variety of biological functions to the survival of organisms and functionalities of these proteins are often due to their homo- or hetero-complexation. Encoded by ~30% of the genome in most organisms, they represent the target of over half of nowadays drugs. Spanning the entirety of the cell membrane, transmembrane proteins are the most common type of membrane proteins and can be classified by secondary structures: alpha-helical and beta-barrel structures. Protein-protein interaction (PPI) have been widely studied for globular proteins and many computational tools are available for predicting PPI sites and construct models of complexes. Here, the structural regions of a non-redundant set of 232 alpha-helical and 37 beta-barrel transmembrane complexes and their interfaces are analyzed. Using the residue composition, frequency and propensity, this study brings the light on the marker residue types located at the structural regions of alpha-helical and beta-barrel transmembrane homomeric protein complexes and of their interfaces. This study also shows the necessity to relate the frequency to the composition into a ratio for immediately figuring out residue types presenting high frequencies at the interface and/or at one of its structural regions despite being a minor contributor compared to other residue types to that location's residue composition.
Collapse
Affiliation(s)
- Sercan Beytur
- Faculty of Engineering and Natural Sciences, Department of Bioinformatics and Genetics, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
5
|
Mei Z, Treado JD, Grigas AT, Levine ZA, Regan L, O'Hern CS. Analyses of protein cores reveal fundamental differences between solution and crystal structures. Proteins 2020; 88:1154-1161. [PMID: 32105366 PMCID: PMC7415476 DOI: 10.1002/prot.25884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
There have been several studies suggesting that protein structures solved by NMR spectroscopy and X-ray crystallography show significant differences. To understand the origin of these differences, we assembled a database of high-quality protein structures solved by both methods. We also find significant differences between NMR and crystal structures-in the root-mean-square deviations of the C α atomic positions, identities of core amino acids, backbone, and side-chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we identify the physical basis for these differences by modeling protein cores as jammed packings of amino acid-shaped particles. We find that we can tune the jammed packing fraction by varying the degree of thermalization used to generate the packings. For an athermal protocol, we find that the average jammed packing fraction is identical to that observed in the cores of protein structures solved by X-ray crystallography. In contrast, highly thermalized packing-generation protocols yield jammed packing fractions that are even higher than those observed in NMR structures. These results indicate that thermalized systems can pack more densely than athermal systems, which suggests a physical basis for the structural differences between protein structures solved by NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Zhe Mei
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - John D Treado
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut
| | - Alex T Grigas
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut
- Graduate Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut
| | - Zachary A Levine
- Department of Pathology, Yale University, New Haven, Connecticut
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Lynne Regan
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Corey S O'Hern
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut
- Department of Physics, Yale University, New Haven, Connecticut
- Department of Applied Physics, Yale University, New Haven, Connecticut
| |
Collapse
|
6
|
Grigas AT, Mei Z, Treado JD, Levine ZA, Regan L, O'Hern CS. Using physical features of protein core packing to distinguish real proteins from decoys. Protein Sci 2020; 29:1931-1944. [PMID: 32710566 PMCID: PMC7454528 DOI: 10.1002/pro.3914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. We used two sources to obtain datasets of decoys to compare with real protein structures: submissions to the biennial Critical Assessment of protein Structure Prediction competition, in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence, and also decoys generated by 3DRobot, which have user-specified global root-mean-squared deviations from experimentally determined structures. Our analysis revealed that both sets of decoys possess cores that do not recapitulate the key features that define real protein cores. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a feed-forward neural network, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoy structures with similar accuracy to that obtained by state-of-the-art methods that incorporate many additional features. The small number of physical features makes our model interpretable, emphasizing the importance of protein packing and hydrophobicity in protein structure prediction.
Collapse
Affiliation(s)
- Alex T. Grigas
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
| | - Zhe Mei
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | - John D. Treado
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
| | - Zachary A. Levine
- Department of PathologyYale UniversityNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | - Lynne Regan
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Corey S. O'Hern
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Department of PhysicsYale UniversityNew HavenConnecticutUSA
- Department of Applied PhysicsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
7
|
Treado JD, Mei Z, Regan L, O’Hern CS. Void distributions reveal structural link between jammed packings and protein cores. Phys Rev E 2019; 99:022416. [PMID: 30934238 PMCID: PMC6902428 DOI: 10.1103/physreve.99.022416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/07/2022]
Abstract
Dense packing of hydrophobic residues in the cores of globular proteins determines their stability. Recently, we have shown that protein cores possess packing fraction ϕ≈0.56, which is the same as dense, random packing of amino-acid-shaped particles. In this article, we compare the structural properties of protein cores and jammed packings of amino-acid-shaped particles in much greater depth by measuring their local and connected void regions. We find that the distributions of surface Voronoi cell volumes and local porosities obey similar statistics in both systems. We also measure the probability that accessible, connected void regions percolate as a function of the size of a spherical probe particle and show that both systems possess the same critical probe size. We measure the critical exponent τ that characterizes the size distribution of connected void clusters at the onset of percolation. We find that the cluster size statistics are similar for void percolation in packings of amino-acid-shaped particles and randomly placed spheres, but different from that for void percolation in jammed sphere packings. We propose that the connected void regions are a defining structural feature of proteins and can be used to differentiate experimentally observed proteins from decoy structures that are generated using computational protein design software. This work emphasizes that jammed packings of amino-acid-shaped particles can serve as structural and mechanical analogs of protein cores, and could therefore be useful in modeling the response of protein cores to cavity-expanding and -reducing mutations.
Collapse
Affiliation(s)
- John D. Treado
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Zhe Mei
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Lynne Regan
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Corey S. O’Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Oi C, Treado JD, Levine ZA, Lim CS, Knecht KM, Xiong Y, O'Hern CS, Regan L. A threonine zipper that mediates protein-protein interactions: Structure and prediction. Protein Sci 2018; 27:1969-1977. [PMID: 30198622 PMCID: PMC6201716 DOI: 10.1002/pro.3505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/31/2023]
Abstract
We present the structure of an engineered protein-protein interface between two beta barrel proteins, which is mediated by interactions between threonine (Thr) residues. This Thr zipper structure suggests that the protein interface is stabilized by close-packing of the Thr residues, with only one intermonomer hydrogen bond (H-bond) between two of the Thr residues. This Thr-rich interface provides a unique opportunity to study the behavior of Thr in the context of many other Thr residues. In previous work, we have shown that the side chain (χ1 ) dihedral angles of interface and core Thr residues can be predicted with high accuracy using a hard sphere plus stereochemical constraint (HS) model. Here, we demonstrate that in the Thr-rich local environment of the Thr zipper structure, we are able to predict the χ1 dihedral angles of most of the Thr residues. Some, however, are not well predicted by the HS model. We therefore employed explicitly solvated molecular dynamics (MD) simulations to further investigate the side chain conformations of these residues. The MD simulations illustrate the role that transient H-bonding to water, in combination with steric constraints, plays in determining the behavior of these Thr side chains. Broader Audience Statement: Protein-protein interactions are critical to life and the search for ways to disrupt adverse protein-protein interactions involved in disease is an ongoing area of drug discovery. We must better understand protein-protein interfaces, both to be able to disrupt existing ones and to engineer new ones for a variety of biotechnological applications. We have discovered and characterized an artificial Thr-rich protein-protein interface. This novel interface demonstrates a heretofore unknown property of Thr-rich surfaces: mediating protein-protein interactions.
Collapse
Affiliation(s)
- Curran Oi
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
| | - John D. Treado
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticut06520
| | - Zachary A. Levine
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
- Department of PathologyYale School of MedicineNew HavenConnecticut06520
| | - Christopher S. Lim
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| | - Yong Xiong
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| | - Corey S. O'Hern
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticut06520
- Department of PhysicsYale UniversityNew HavenConnecticut06520
- Department of Applied PhysicsYale UniversityNew HavenConnecticut06520
| | - Lynne Regan
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticut06520
- Department of ChemistryYale UniversityNew HavenConnecticut06520
- Institute of Quantitative BiologyBiochemistry and Biotechnology, Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh
| |
Collapse
|