1
|
Zhou J, Xia M, Huang Z, Qiao H, Yang G, Qian Y, Li P, Zhang Z, Gao X, Jiang L, Wang J, Li W, Fang P. Structure-guided conversion from an anaplastic lymphoma kinase inhibitor into Plasmodium lysyl-tRNA synthetase selective inhibitors. Commun Biol 2024; 7:742. [PMID: 38890421 PMCID: PMC11189516 DOI: 10.1038/s42003-024-06455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.
Collapse
Affiliation(s)
- Jintong Zhou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guang Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Xinai Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Pengfei Fang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Xie SC, Griffin MDW, Winzeler EA, Ribas de Pouplana L, Tilley L. Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development. Annu Rev Microbiol 2023; 77:111-129. [PMID: 37018842 DOI: 10.1146/annurev-micro-032421-121210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain;
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Leann Tilley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| |
Collapse
|
3
|
Yogavel M, Bougdour A, Mishra S, Malhotra N, Chhibber-Goel J, Bellini V, Harlos K, Laleu B, Hakimi MA, Sharma A. Targeting prolyl-tRNA synthetase via a series of ATP-mimetics to accelerate drug discovery against toxoplasmosis. PLoS Pathog 2023; 19:e1011124. [PMID: 36854028 PMCID: PMC9974123 DOI: 10.1371/journal.ppat.1011124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 03/02/2023] Open
Abstract
The prolyl-tRNA synthetase (PRS) is a validated drug target for febrifugine and its synthetic analog halofuginone (HFG) against multiple apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Here, a novel ATP-mimetic centered on 1-(pyridin-4-yl) pyrrolidin-2-one (PPL) scaffold has been validated to bind to Toxoplasma gondii PRS and kill toxoplasma parasites. PPL series exhibited potent inhibition at the cellular (T. gondii parasites) and enzymatic (TgPRS) levels compared to the human counterparts. Cell-based chemical mutagenesis was employed to determine the mechanism of action via a forward genetic screen. Tg-resistant parasites were analyzed with wild-type strain by RNA-seq to identify mutations in the coding sequence conferring drug resistance by computational analysis of variants. DNA sequencing established two mutations, T477A and T592S, proximal to terminals of the PPL scaffold and not directly in the ATP, tRNA, or L-pro sites, as supported by the structural data from high-resolution crystal structures of drug-bound enzyme complexes. These data provide an avenue for structure-based activity enhancement of this chemical series as anti-infectives.
Collapse
Affiliation(s)
- Manickam Yogavel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
4
|
Sharma VK, Gupta S, Chhibber-Goel J, Yogavel M, Sharma A. A single amino acid substitution alters activity and specificity in Plasmodium falciparum aspartyl & asparaginyl-tRNA synthetases. Mol Biochem Parasitol 2022; 250:111488. [DOI: 10.1016/j.molbiopara.2022.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
5
|
Babbar P, Sato M, Manickam Y, Mishra S, Harlos K, Gupta S, Parvez S, Kikuchi H, Sharma A. Inhibition of Plasmodium falciparum Lysyl-tRNA Synthetase via a Piperidine-Ring Scaffold Inspired Cladosporin Analogues. Chembiochem 2021; 22:2468-2477. [PMID: 33969584 DOI: 10.1002/cbic.202100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/08/2022]
Abstract
Plasmodium falciparum lysyl-tRNA synthetase (PfKRS) represents a promising therapeutic anti-malarial target. Cladosporin was identified as a selective and potent PfKRS inhibitor but lacks metabolic stability. Here, we report chemical synthesis, biological evaluation and structural characterization of analogues where the tetrahydropyran (THP) frame of cladosporin is replaced with the piperidine ring bearing functional group variations. Thermal binding, enzymatic, kinetic and parasitic assays complemented with X-ray crystallography reveal compounds that are moderate in potency. Co-crystals of Cla-B and Cla-C with PfKRS reveal key atomic configurations that allow drug binding to and inhibition of the enzyme. Collectively these piperidine ring scaffold inhibitors lay a framework for further structural editing and functional modifications of the cladosporin scaffold to obtain a potent lead.
Collapse
Affiliation(s)
- Palak Babbar
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mizuki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yogavel Manickam
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Siddhartha Mishra
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Swati Gupta
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
- Present affiliation: Division of Natural Medicines, Faculty of Pharmacy, Keio University, Japan
| | - Amit Sharma
- Molecular Medicine - Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, New Delhi, 110077, India
| |
Collapse
|
6
|
Babbar P, Das P, Manickam Y, Mankad Y, Yadav S, Parvez S, Sharma A, Reddy DS. Design, Synthesis, and Structural Analysis of Cladosporin-Based Inhibitors of Malaria Parasites. ACS Infect Dis 2021; 7:1777-1794. [PMID: 33843204 DOI: 10.1021/acsinfecdis.1c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we have described a systematic structure activity relationship (SAR) of a set of compounds inspired from cladosporin, a tool compound that targets parasite (Plasmodium falciparum) lysyl tRNA synthetase (KRS). Four sets of analogues, synthesized based on point changes in the chemical scaffold of cladosporin and other logical modifications and hybridizations, were assessed using high throughput enzymatic and parasitic assays along with in vitro pharmacokinetics. Co-crystallization of the most potent compound in our series (CL-2) with PfKRS revealed its structural basis of enzymatic binding and potency. Further, we report that CL-2 has performed better than cladosporin in terms of metabolic stability. It thus represents a new lead for further optimization toward the development of antimalarial drugs. Collectively, along with a lead compound, the series offers insights on how even the slightest chemical modification might play an important role in enhancing or decreasing the potency of a chemical scaffold.
Collapse
Affiliation(s)
- Palak Babbar
- Molecular Medicine−Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pronay Das
- Organic Chemistry Division, CSIR−National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogavel Manickam
- Molecular Medicine−Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yash Mankad
- Organic Chemistry Division, CSIR−National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Swati Yadav
- Organic Chemistry Division, CSIR−National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Amit Sharma
- Molecular Medicine−Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- ICMR−National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India
| | - D. Srinivasa Reddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR−Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
7
|
Chaturvedi R, Chhibber-Goel J, Verma I, Gopinathan S, Parvez S, Sharma A. Geographical spread and structural basis of sulfadoxine-pyrimethamine drug-resistant malaria parasites. Int J Parasitol 2021; 51:505-525. [PMID: 33775670 DOI: 10.1016/j.ijpara.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ∼61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ∼33% globally) with triple mutations prevailing in Africa (∼66%) and South America (∼33%). For PfDHPS, triple mutations dominate South America (∼44%), Asia and the Middle East (∼34%) and the Indian sub-continent (∼27%), while single mutations are widespread in Africa (∼45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ishika Verma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sreehari Gopinathan
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; National Institute of Malaria Research, Dwarka, New Delhi, India.
| |
Collapse
|
8
|
Bouz G, Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorg Chem 2021; 110:104806. [PMID: 33799176 DOI: 10.1016/j.bioorg.2021.104806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are crucial for the correct assembly of amino acids to cognate tRNA to maintain the fidelity of proteosynthesis. AaRSs have become a hot target in antimicrobial research. Three aaRS inhibitors are already in clinical practice; antibacterial mupirocin inhibits the synthetic site of isoleucyl-tRNA synthetase, antifungal tavaborole inhibits the editing site of leucyl-tRNA synthetase, and antiprotozoal halofuginone inhibits proline-tRNA synthetase. According to the World Health Organization, tuberculosis globally remains the leading cause of death from a single infectious agent. The rising incidence of multidrug-resistant tuberculosis is alarming and urges the search for new antimycobacterial compounds, preferably with yet unexploited mechanism of action. In this literature review, we have covered the up-to-date state in the field of inhibitors of mycobacterial aaRSs. The most studied aaRS in mycobacteria is LeuRS with at least four structural types of inhibitors, followed by TyrRS and AspRS. Inhibitors of MetRS, LysRS, and PheRS were addressed in a single significant study each. In many cases, the enzyme inhibition activity translated into micromolar or submicromolar inhibition of growth of mycobacteria. The most promising aaRS inhibitor as an antimycobacterial compound is GSK656 (compound 8), the only aaRS inhibitor in clinical trials (Phase IIa) for systemic use against tuberculosis. GSK656 is orally available and shares the oxaborole tRNA-trapping mechanism of action with antifungal tavaborole.
Collapse
Affiliation(s)
- Ghada Bouz
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University.
| |
Collapse
|
9
|
Zhou J, Huang Z, Zheng L, Hei Z, Wang Z, Yu B, Jiang L, Wang J, Fang P. Inhibition of Plasmodium falciparum Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor. Nucleic Acids Res 2021; 48:11566-11576. [PMID: 33053158 PMCID: PMC7672456 DOI: 10.1093/nar/gkaa862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Aminoacyl-tRNA synthetases are attractive targets for the development of antibacterial, antifungal, antiparasitic agents and for the treatment of other human diseases. Lysyl-tRNA synthetase (LysRS) from this family has been validated as a promising target for the development of antimalarial drugs. Here, we developed a high-throughput compatible assay and screened 1215 bioactive compounds to identify Plasmodium falciparum cytoplasmic LysRS (PfLysRS) inhibitor. ASP3026, an anaplastic lymphoma kinase inhibitor that was used in clinical trials for the treatment of B-cell lymphoma and solid tumors, was identified as a novel PfLysRS inhibitor. ASP3026 suppresses the enzymatic activity of PfLysRS at nanomolar potency, which is >380-fold more effective than inhibition of the human counterpart. In addition, the compound suppressed blood-stage P. falciparum growth. To understand the molecular mechanism of inhibition by ASP3026, we further solved the cocrystal structure of PfLysRS-ASP3026 at a resolution of 2.49 Å, providing clues for further optimization of the compound. Finally, primary structure-activity relationship analyses indicated that the inhibition of PfLysRS by ASP3026 is highly structure specific. This work not only provides a new chemical scaffold with good druggability for antimalarial development but also highlights the potential for repurposing kinase-inhibiting drugs to tRNA synthetase inhibitors to treat human diseases.
Collapse
Affiliation(s)
- Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhenghui Huang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhiyong Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
10
|
Zhou J, Zheng L, Hei Z, Li W, Wang J, Yu B, Fang P. Atomic Resolution Analyses of Isocoumarin Derivatives for Inhibition of Lysyl-tRNA Synthetase. ACS Chem Biol 2020; 15:1016-1025. [PMID: 32195573 DOI: 10.1021/acschembio.0c00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetases, the essential enzyme family for protein translation, are attractive targets for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The antimalarial natural product cladosporin was discovered recently as a novel lysyl-tRNA synthetase (LysRS) specific inhibitor. Here, we report a thorough analysis of cladosporin derivatives using chemical synthesis, biophysical, and biochemical experiments. A series of isocoumarin derivatives with only one nonhydrogen atom/bond change per compound was synthesized. These changes include replacements of methyltetrahydropyran moiety by methylcyclohexane or cyclohexane, lactone by lactam, hydroxyl groups by methoxyl groups, and dismission of the chiral center at C3 with a Δ3,4 double bond. We evaluated these compounds by thermal shift assays and enzymatic experiments and further studied their molecular recognition by the Plasmodium falciparum LysRS through total five high-resolution crystal structures. Our results showed that the methyltetrahydropyran moiety of cladosporin could be replaced by a more stable methylcyclohexane without reducing binding ability. Removing the methyl group from the methylcyclohexane moiety slightly decreased the interaction with LysRS. Besides, the replacement with a lactam group or a conjugated Δ3,4 double bond within the scaffold could be two more options to optimize the compound. Lastly, the two phenolic hydroxyl groups were critical for the compounds to bind LysRS. The detailed analyses at atomic resolution in this study provide a foundation for the further development of new antibiotics from cladosporin derivatives.
Collapse
Affiliation(s)
- Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
11
|
Chhibber-Goel J, Sharma A. Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance. Int J Parasitol Drugs Drug Resist 2019; 11:49-58. [PMID: 31606696 PMCID: PMC6796718 DOI: 10.1016/j.ijpddr.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Artemisinin-based combination therapy (ACT) offers highly successful treatment of malaria. Emergence and spread of Plasmodium falciparum (Pf) parasites with decreased susceptibility to ACT in South-East Asia has caused concern worldwide. The current accepted criteria to assess artemisinin (ART) resistance relies upon data on treatment failure, delayed parasite clearance at day 3 (DPC3), parasite clearance half-life (PCHL) and in-vitro/ex-vivo ring stage survival assays (RSAs). Interestingly, some studies suggest that DPC3 does not provide a distinct separation between ART sensitive/resistant strains, and RSA differences may also be inconclusive. More recently, recrudescence of ART treated Pf, independent of the presence of Kelch 13 (K13) mutation (C580Y), has been reported in the monkey malaria model suggesting that genes other than K13 like coronin, dhps, dhfr, crt, mdr1 and plasmepsin1 may contribute towards ACT failure. Here we have collated the distribution of K13 mutants from Pf strains in South Asia. A total of fifty Pf-K13 mutations have been studied for ART resistance in South Asia of which nine have been validated while eleven are potentials for ART resistance. The remaining thirty K13 mutations have been reported from various locations in South Asia but lack corroborative clinical data on ART resistance/ACT failure. Of the fifty, fourteen K13 mutations have been identified in India including four novel mutations (S549Y, G625R, N657H, D702N). Structural mapping of these K13 mutations does not offer any coherent explanation for their contribution towards ART resistance as they are scattered in the K13 structure. Thus, K13 mutations likely provide only a partial synopsis, and we propose that all suspect cases of ACT failure be assessed by: 1) DPC3, 2) PCHL, 3) in-vitro/ex-vivo RSAs and 4) GWAS data in an effort to annotate the resistance status of the parasites. These efforts may help in surveillance and containment of ART resistance/ACT failure in South Asia.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
12
|
Mishra S, Malhotra N, Kumari S, Sato M, Kikuchi H, Yogavel M, Sharma A. Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyl-tRNA synthetase. Acta Crystallogr F Struct Biol Commun 2019; 75:714-724. [PMID: 31702585 PMCID: PMC6839821 DOI: 10.1107/s2053230x19014808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 11/11/2022] Open
Abstract
Prolyl-tRNA synthetase (PRS) is a member of the aminoacyl-tRNA synthetase family that drives protein translation in cells. The apicomplexan PRSs are validated targets of febrifugine (FF) and its halogenated derivative halofuginone (HF). PRSs are of great interest for drug development against Plasmodium falciparum and Toxoplasma gondii. In this study, structures of apo and FF-bound T. gondii (TgPRS) are revealed and the dynamic nature of the conformational changes that occur upon FF binding is unraveled. In addition, this study highlights significant conformational plasticity within two different crystal structures of apo PRSs but not within drug-bound PRSs. The apo PRSs exist in multi-conformational states and manifest pseudo-dimeric structures. In contrast, when FF is bound the PRS dimer adopts a highly symmetrical architecture. It is shown that TgPRS does not display extant fold switching, in contrast to P. falciparum PRS, despite having over 65% sequence identity. Finally, structure-comparison analyses suggest the utility of r.m.s.d. per residue (r.m.s.d./res) as a robust tool to detect structural alterations even when the r.m.s.d. is low. Apo TgPRS reveals FF/HF-induced rigidity and this work has implications for drug-design studies that rely on the apo structures of target proteins.
Collapse
Affiliation(s)
- Siddhartha Mishra
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Nipun Malhotra
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Shreya Kumari
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Mizuki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Manickam Yogavel
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Amit Sharma
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| |
Collapse
|
13
|
Chhibber-Goel J, Joshi S, Sharma A. Aminoacyl tRNA synthetases as potential drug targets of the Panthera pathogen Babesia. Parasit Vectors 2019; 12:482. [PMID: 31610802 PMCID: PMC6792207 DOI: 10.1186/s13071-019-3717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background A century ago, pantheras were abundant across Asia. Illegal hunting and trading along with loss of habitat have resulted in the designation of Panthera as a genus of endangered species. In addition to the onslaught from humans, pantheras are also susceptible to outbreaks of several infectious diseases, including babesiosis. The latter is a hemoprotozoan disease whose causative agents are the eukaryotic parasites of the apicomplexan genus Babesia. Babesiosis affects a varied range of animals including humans (Homo sapiens), bovines (e.g. Bos taurus), pantheras (e.g. Panthera tigris, P. leo, P. pardus) and equines. Babesia spp. are transmitted by the tick vector Ixodes scapularis or ticks of domestic animals, namely Rhipicephalus (Boophilus) microplus and R. (B.) decoloratus. At the level of protein translation within these organisms, the conserved aminoacyl tRNA synthetase (aaRS) family offers an opportunity to identify the sequence and structural differences in the host (Panthera) and parasites (Babesia spp.) in order to exploit these for drug targeting Babesia spp. Methods Using computational tools we investigated the genomes of Babesia spp. and Panthera tigris so as to annotate their aaRSs. The sequences were analysed and their subcellular localizations were predicted using Target P1.1, SignalP 3.0, TMHMM v.2.0 and Deeploc 1.0 web servers. Structure-based analysis of the aaRSs from P. tigris and its protozoan pathogens Babesia spp. was performed using Phyre2 and chimera. Results We identified 33 (B. bovis), 34 (B. microti), 33 (B. bigemina) and 33 (P. tigris) aaRSs in these respective organisms. Poor sequence identity (~ 20–50%) between aaRSs from Babesia spp. and P. tigris was observed and this merits future experiments to validate new drug targets against Babesia spp. Conclusions Overall this work provides a foundation for experimental investigation of druggable aaRSs from Babesia sp. in an effort to control Babesiosis in Panthera.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sarthak Joshi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|