1
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Satchanska G, Davidova S, Gergova A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics (Basel) 2024; 13:202. [PMID: 38534637 DOI: 10.3390/antibiotics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are usually made up of fewer than 100 amino acid residues. They are found in many living organisms and are an important factor in those organisms' innate immune systems. AMPs can be extracted from various living sources, including bacteria, plants, animals, and even humans. They are usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. They can act against both Gram-negative and Gram-positive pathogens and have various modes of action against them. Some attack the pathogens' membranes, while others target their intracellular organelles, as well as their nucleic acids, proteins, and metabolic pathways. A crucial area of AMP use is related to their ability to help with emerging antibiotic resistance: some AMPs are active against resistant strains and are susceptible to peptide engineering. This review considers AMPs from three key sources-plants, animals, and humans-as well as their modes of action and some AMP sequences.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Slavena Davidova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Alexandra Gergova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| |
Collapse
|
3
|
Vasconcelos AA, Estrada JC, Caruso IP, Kurtenbach E, Zingali RB, Almeida FCL. Toward the mechanism of jarastatin (rJast) inhibition of the integrin αVβ3. Int J Biol Macromol 2024; 255:128078. [PMID: 37972836 DOI: 10.1016/j.ijbiomac.2023.128078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Disintegrins are a family of cysteine-rich small proteins that were first identified in snake venom. The high divergence of disintegrins gave rise to a plethora of functions, all related to the interaction with integrins. Disintegrins evolved to interact selectively with different integrins, eliciting many physiological outcomes and being promising candidates for the therapy of many pathologies. We used NMR to determine the structure and dynamics of the recombinant disintegrin jarastatin (rJast) and its interaction with the cancer-related integrin αVβ3. rJast displayed the canonical fold of a medium-sized disintegrin and showed complex dynamic in multiple timescales. We used NMR experiments to map the interaction of rJast with αVβ3, and molecular docking followed by molecular dynamics (MD) simulation to describe the first structural model of a disintegrin/integrin complex. We showed that not only the RGD loop participates in the interaction, but also the N-terminal domain. rJast plasticity was essential for the interaction with αVβ3 and correlated with the main modes of motion depicted in the MD trajectories. In summary, our study provides novel structural insights that enhance our comprehension of the mechanisms underlying disintegrin functionality.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Laboratório de RMN de Biomoléculas, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Icaro P Caruso
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto, São Paulo, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabio C L Almeida
- Laboratório de RMN de Biomoléculas, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Vasconcelos AA, Succar BB, di Piero LB, Kurtenbach E, Zingali RB, Almeida FCL. 15N, 13C, and 1H resonance assignments of Jarastatin: a disintegrin of Bothrops jararaca. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:37-40. [PMID: 34826102 DOI: 10.1007/s12104-021-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Disintegrins are a group of cysteine-rich proteins found in a wide variety of snake venoms. These proteins selectively bind to integrins, which play a fundamental role in the regulation of many physiological and pathological processes. Here, we report the NMR chemical shift assignments for 1H, 15N, and 13C nuclei in the backbone and side chains of recombinant disintegrin Jarastatin (rJast), which was further validated by secondary structure prediction using the TALOS-N server. Taken together, these data are essential to perform NMR-based experiments, including structure determination, backbone dynamics, mapping ligand sites and enabling a deeper understanding of the effect of hydrophobic surface clusters, which are important elements to stabilize some 3D proteins structure/folding.
Collapse
Affiliation(s)
- Ariana Azevedo Vasconcelos
- Institute of Medical Biochemistry (IBqM) Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Bartkevihi di Piero
- Institute of Medical Biochemistry (IBqM) Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas (LBMBP), Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabio C L Almeida
- Institute of Medical Biochemistry (IBqM) Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Corrêa-Almeida C, Borba-Santos LP, Rollin-Pinheiro R, Barreto-Bergter E, Rozental S, Kurtenbach E. Characterization of Aspergillus nidulans Biofilm Formation and Structure and Their Inhibition by Pea Defensin Psd2. Front Mol Biosci 2022; 9:795255. [PMID: 35155575 PMCID: PMC8830917 DOI: 10.3389/fmolb.2022.795255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately four million people contract fungal infections every year in Brazil, primarily caused by Aspergillus spp. The ability of these fungi to form biofilms in tissues and medical devices complicates treatment and contributes to high rates of morbidity and mortality in immunocompromised patients. Psd2 is a pea defensin of 5.4 kDa that possesses good antifungal activity against planktonic cells of representative pathogenic fungi. Its function depends on interactions with membrane and cell wall lipid components such as glucosylceramide and ergosterol. In the present study, we characterized Aspergillus nidulans biofilm formation and determined the effect of Psd2 on A. nidulans biofilms. After 4 hours, A. nidulans conidia adhered to polystyrene surfaces and formed a robust extracellular matrix-producing biofilm at 24 h, increasing thickness until 48 h Psd2 inhibited A. nidulans biofilm formation in a dose-dependent manner. Most notably, at 10 μM Psd2 inhibited 50% of biofilm viability and biomass and 40% of extracellular matrix production. Psd2 significantly decreased the colonized surface area by the biofilm and changed its level of organization, causing a shortening of length and diameter of hyphae and inhibition of conidiophore formation. This activity against A. nidulans biofilm suggests a potential use of Psd2 as a prototype to design new antifungal agents to prevent biofilm formation by A. nidulans and related species.
Collapse
Affiliation(s)
- Caroline Corrêa-Almeida
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luana P. Borba-Santos
- Laboratório de Biologia Celular de Fungos, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
- *Correspondence: Eleonora Kurtenbach,
| |
Collapse
|
6
|
Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci 2021; 8:783301. [PMID: 34926583 PMCID: PMC8678471 DOI: 10.3389/fmolb.2021.783301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Almeida FCL, Sanches K, Pinheiro-Aguiar R, Almeida VS, Caruso IP. Protein Surface Interactions-Theoretical and Experimental Studies. Front Mol Biosci 2021; 8:706002. [PMID: 34307462 PMCID: PMC8298896 DOI: 10.3389/fmolb.2021.706002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, we briefly describe a theoretical discussion of protein folding, presenting the relative contribution of the hydrophobic effect versus the stabilization of proteins via direct surface forces that sometimes may be overlooked. We present NMR-based studies showing the stability of proteins lacking a hydrophobic core which in turn present hydrophobic surface clusters, such as plant defensins. Protein dynamics measurements by NMR are the key feature to understand these dynamic surface clusters. We contextualize the measurement of protein dynamics by nuclear relaxation and the information available at protein surfaces and water cavities. We also discuss the presence of hydrophobic surface clusters in multidomain proteins and their participation in transient interactions which may regulate the function of these proteins. In the end, we discuss how surface interaction regulates the reactivity of certain protein post-translational modifications, such as S-nitrosation.
Collapse
Affiliation(s)
- Fabio C L Almeida
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB), Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| | - Ramon Pinheiro-Aguiar
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor S Almeida
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Icaro P Caruso
- Institute of Medical Biochemistry-IBqM, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging (CENABIO)/National Center for Nuclear Magnetic Resonance (CNRMN), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB), Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| |
Collapse
|
8
|
Moreira MH, Almeida FC, Domitrovic T, Palhano FL. A systematic structural comparison of all solved small proteins deposited in PDB. The effect of disulfide bonds in protein fold. Comput Struct Biotechnol J 2021; 19:6255-6262. [PMID: 35024090 PMCID: PMC8712280 DOI: 10.1016/j.csbj.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Defensins are small proteins, usually ranging from 3 to 6 kDa, amphipathic, disulfide-rich, and with a small or even absent hydrophobic core. Since a hydrophobic core is generally found in globular proteins that fold in an aqueous solvent, the peculiar fold of defensins can challenge tertiary protein structure predictors. We performed a Protein Data Bank survey of small proteins (3–6 kDa) to understand the similarities of defensins with other small disulfide-rich proteins. We found no differences when we compared defensins with non-defensins regarding the proportion of apolar, polar and charged residues and their exposure to the solvent. Then we divided all small proteins (3–6 kDa) in the Protein Data Bank into two groups, one group with at least one disulfide bond (bonded, defensins included) and another group without any disulfide bond (unbonded). The group of bonded proteins contained apolar residues more exposed to the solvent than the unbonded group. The ab initio algorithm for tertiary protein structure prediction Robetta was more accurate at predicting unbonded than bonded proteins. On the other hand, the trRosetta algorithm, which uses artificial intelligence, improved the prediction of most bonded proteins, while for the unbonded group no improvement was obtained. Our work highlights one more layer of complexity for the prediction of protein tertiary structure: The ability of small disulfide-rich proteins to fold even with a poorly hydrophobic core.
Collapse
|
9
|
Plant Defensins from a Structural Perspective. Int J Mol Sci 2020; 21:ijms21155307. [PMID: 32722628 PMCID: PMC7432377 DOI: 10.3390/ijms21155307] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Plant defensins form a family of proteins with a broad spectrum of protective activities against fungi, bacteria, and insects. Furthermore, some plant defensins have revealed anticancer activity. In general, plant defensins are non-toxic to plant and mammalian cells, and interest in using them for biotechnological and medicinal purposes is growing. Recent studies provided significant insights into the mechanisms of action of plant defensins. In this review, we focus on structural and dynamics aspects and discuss structure-dynamics-function relations of plant defensins.
Collapse
|
10
|
do Amaral VSG, Santos SACS, de Andrade PC, Nowatzki J, Júnior NS, de Medeiros LN, Gitirana LB, Pascutti PG, Almeida VH, Monteiro RQ, Kurtenbach E. Pisum sativum Defensin 1 Eradicates Mouse Metastatic Lung Nodules from B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:E2662. [PMID: 32290394 PMCID: PMC7219108 DOI: 10.3390/ijms21082662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Psd1 is a pea plant defensin which can be actively expressed in Pichia pastoris and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane. In this work, in vitroassays using B16F10 cells showed that labeled fluorescein isothiocyanate FITC-Psd1 internalized into live cultured cells and targeted the nucleus, which underwent fragmentation, exhibiting approximately 60% of cells in the sub-G0/G1 stage. This phenomenon was dependent on GlcCer, and the participation of cyclin-F was suggested. In a murine lung metastatic melanoma model, intravenous injection of Psd1 together with B16F10 cells drastically reduced the number of nodules at concentrations above 0.5 mg/kg. Additionally, the administration of 1 mg/kg Psd1 decreased the number of lung inflammatory cells to near zero without weight loss, unlike animals that received melanoma cells only. It is worth noting that 1 mg/kg Psd1 alone did not provoke inflammation in lung tissue or weight or vital signal losses over 21 days, inferring no whole animal cytotoxicity. These results suggest that Psd1 could be a promising prototype for human lung anti-metastatic melanoma therapy.
Collapse
Affiliation(s)
- Virginia Sara Grancieri do Amaral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Stephanie Alexia Cristina Silva Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Paula Cavalcante de Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Jenifer Nowatzki
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Nilton Silva Júnior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Luciano Neves de Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Lycia Brito Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil;
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Vitor H. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| |
Collapse
|