1
|
Saharkhiz S, Mostafavi M, Birashk A, Karimian S, Khalilollah S, Jaferian S, Yazdani Y, Alipourfard I, Huh YS, Farani MR, Akhavan-Sigari R. The State-of-the-Art Overview to Application of Deep Learning in Accurate Protein Design and Structure Prediction. Top Curr Chem (Cham) 2024; 382:23. [PMID: 38965117 PMCID: PMC11224075 DOI: 10.1007/s41061-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
In recent years, there has been a notable increase in the scientific community's interest in rational protein design. The prospect of designing an amino acid sequence that can reliably fold into a desired three-dimensional structure and exhibit the intended function is captivating. However, a major challenge in this endeavor lies in accurately predicting the resulting protein structure. The exponential growth of protein databases has fueled the advancement of the field, while newly developed algorithms have pushed the boundaries of what was previously achievable in structure prediction. In particular, using deep learning methods instead of brute force approaches has emerged as a faster and more accurate strategy. These deep-learning techniques leverage the vast amount of data available in protein databases to extract meaningful patterns and predict protein structures with improved precision. In this article, we explore the recent developments in the field of protein structure prediction. We delve into the newly developed methods that leverage deep learning approaches, highlighting their significance and potential for advancing our understanding of protein design.
Collapse
Affiliation(s)
- Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Birashk
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Shiva Karimian
- Electrical and Computer Research Center, Sanandaj Azad University, Sanandaj, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sohrab Jaferian
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, USA
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | | | | |
Collapse
|
2
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Adderley J, Grau GE. Host-directed therapies for malaria: possible applications and lessons from other indications. Curr Opin Microbiol 2023; 71:102228. [PMID: 36395572 DOI: 10.1016/j.mib.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
Abstract
Host-directed therapies (HDT) are rapidly advancing as a new and clinically relevant strategy to treat infectious disease. The application of HDT can be broadly used to (i) inhibit host factors essential for pathogen development, including host protein kinases, (ii) control detrimental immune signalling, resulting from excessive release of cytokines, chemokines and extracellular vesicles and (iii) strengthen host defence mechanisms, such as tight junctions in the endothelium. For malaria and other eukaryotic parasite-causing diseases, HDTs could provide a novel avenue to combat the growing resistance seen across all antimicrobials and provide protection against the severe forms of disease through modulation of the host immune response.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Weinstein JJ, Goldenzweig A, Hoch SY, Fleishman SJ. PROSS 2: a new server for the design of stable and highly expressed protein variants. Bioinformatics 2020; 37:123-125. [PMID: 33367682 PMCID: PMC7611707 DOI: 10.1093/bioinformatics/btaa1071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Many natural and designed proteins are only marginally stable limiting their usefulness in research and applications. Recently, we described an automated structure and sequence-based design method, called PROSS, for optimizing protein stability and heterologous expression levels that has since been validated on dozens of proteins. Here, we introduce improvements to the method, workflow and presentation, including more accurate sequence analysis, error handling and automated analysis of the quality of the sequence alignment that is used in design calculations. PROSS2 is freely available for academic use at https://pross.weizmann.ac.il.
Collapse
Affiliation(s)
| | - Adi Goldenzweig
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomo-Yakir Hoch
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
6
|
Weinstein J, Khersonsky O, Fleishman SJ. Practically useful protein-design methods combining phylogenetic and atomistic calculations. Curr Opin Struct Biol 2020; 63:58-64. [PMID: 32505941 DOI: 10.1016/j.sbi.2020.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Our ability to design new or improved biomolecular activities depends on understanding the sequence-function relationships in proteins. The large size and fold complexity of most proteins, however, obscure these relationships, and protein-optimization methods continue to rely on laborious experimental iterations. Recently, a deeper understanding of the roles of stability-threshold effects and biomolecular epistasis in proteins has led to the development of hybrid methods that combine phylogenetic analysis with atomistic design calculations. These methods enable reliable and even single-step optimization of protein stability, expressibility, and activity in proteins that were considered outside the scope of computational design. Furthermore, ancestral-sequence reconstruction produces insights on missing links in the evolution of enzymes and binders that may be used in protein design. Through the combination of phylogenetic and atomistic calculations, the long-standing goal of general computational methods that can be universally applied to study and optimize proteins finally seems within reach.
Collapse
Affiliation(s)
- Jonathan Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
7
|
Guizouarn H, Allegrini B. Erythroid glucose transport in health and disease. Pflugers Arch 2020; 472:1371-1383. [PMID: 32474749 DOI: 10.1007/s00424-020-02406-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Glucose transport is intimately linked to red blood cell physiology. Glucose is the unique energy source for these cells, and defects in glucose metabolism or transport activity are associated with impaired red blood cell morphology and deformability leading to reduced lifespan. In vertebrate erythrocytes, glucose transport is mediated by GLUT1 (in humans) or GLUT4 transporters. These proteins also account for dehydroascorbic acid (DHA) transport through erythrocyte membrane. The peculiarities of glucose transporters and the red blood cell pathologies involving GLUT1 are summarized in the present review.
Collapse
Affiliation(s)
- Hélène Guizouarn
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, 28 av. Valrose, 06100, Nice, France.
| | - Benoit Allegrini
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, 28 av. Valrose, 06100, Nice, France
| |
Collapse
|