1
|
Matsushima N, Kretsinger RH. Numerous variants of leucine rich repeats in proteins from nucleo-cytoplasmic large DNA viruses. Gene X 2022; 817:146156. [PMID: 35032616 DOI: 10.1016/j.gene.2021.146156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022] Open
Abstract
Leucine rich repeats (LRRs) occurring in tandem are 20-29 amino acids long. Eleven LRR types have been recognized. Sequence features of LRRs from viruses were investigated using over 600 LRR proteins from 89 species. Directly before, metagenome data of nucleo-cytoplasmic large dsDNA viruses (NCLDVs) have been published; the 2,074 NCLDVs encode 199,021 proteins. From the NCLDVs 547 LRR proteins were identified and 502 were used for analysis. Various variants of known LRR types were identified in viral LRRs. A comprehensive analysis of TpLRR and FNIP that belong to an LRR type was first performed. The repeating unit lengths (RULs) in five types are 19 residues which is the shortest among all LRRs. The RULs of eight LRR types including FNIP are one to five residues shorter than those of the known, corresponding LRR types. The conserved hydrophobic residues such as Leu, Val or Ile in the consensus sequences are frequently substituted by cysteine at one or two positions. Four unique LRR motifs that are different from those identified previously are observed. The present study enhances the previous result. An evolutionary scenario of short or unique LRR was discussed.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu 059-0464, Japan; Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
2
|
Liu H, Yang M, Tang X, Liu J, Zheng L, Xu D, Chi C, Lv Z. Molecular insights of a novel fish Toll-like receptor 9 homologue in Nibea albiflora to reveal its function as PRRs. FISH & SHELLFISH IMMUNOLOGY 2021; 118:321-332. [PMID: 34555530 DOI: 10.1016/j.fsi.2021.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/29/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Toll-like receptors (TLRs) are an important class of molecules involved in non-specific immunity, and they are also the bridge connecting between non-specific immunity and specific immunity. As a vital member of TLR family TLR9 can be activated by bacterial DNA and induce the production of inflammatory cytokines. In this study, a full length of TLR9 homologue of 3677 bp in Nibea albiflora (named as NaTLR9, GenBank accession no: MN125017.1) was characterized, and its ORF was 3180 bp encoding 1059 amino acid residues with a calculated molecular weight of 121.334 kDa (pI = 6.29). Several leucine-rich repeated sequences (LRR domain) and conservative TIR domain were found in NaTLR9, which was mainly expressed in dendritic cells and macrophages. The phylogenetic and synteny analysis further revealed high sequence identity of NaTLR9 with its counterparts of other teleost, confirming their correct nomenclature and conservative during evolution as an important pattern recognition receptor. The NaTLR9-TIR-pEGFP-N1 fusion protein showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection of NaTLR9-TIR-pEGFP-N1 and NaMyD88-pDsRED-Monomer-N1, green fluorescence obviously overlapped with red and changed into yellowish-green, which suggested that there might be the interaction between homologous NaTLR9-TIR and MyD88. Based on this result the pCDNA3.1-NaTLR9-TIR-flag and pcMV-NaMyD88-TIR-Myc plasmids were co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, TLR9 and MyD88 protein could interact with each other. Furthermore, NaTLR9 was ubiquitously expressed in all the investigated tissues, most abundantly in head kidney, followed by stomach, spleen, liver and gill, but lower in muscle. The vitro immune stimulation experiments revealed that Pseudomonas plecoglossicida and polyinosinic-polycytidylic acid [Poly (I:C)] induced higher levels of NaTLR9 mRNA expression with the peaks of 9.52 times at 2 h and 39.91 times at 24 h compared with the control group respectively. The functional domains (LRRs and TIR, named NaTLR9-TIR and NaTLR9-LRR respectively) of NaTLR9 were expressed and purified, the recombinant proteins both could bind three kinds of typical aquatic pathogenic bacteria (Vibrio. parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi), which showed that NaTLR9 could couple to bacteria by its function domains. The aforementioned results indicated that NaTLR9 played a significant role in the defense against pathogenic bacteria infection in innate immune response of sciaenidae fish, which may provide some further understandings of the regulatory mechanisms in the teleostean innate immune system.
Collapse
Affiliation(s)
- Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Meijun Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiuqin Tang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiaxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, PR China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
3
|
Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background/Aim Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). Methods and Materials To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. Results Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. Conclusion TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
|
4
|
Cao X, Lemaire S, Bollen M. Protein phosphatase 1: life-course regulation by SDS22 and Inhibitor-3. FEBS J 2021; 289:3072-3085. [PMID: 34028981 DOI: 10.1111/febs.16029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a sizable fraction of protein Ser/Thr dephosphorylation events. It is tightly regulated in space and time through association with a wide array of regulatory interactors of protein phosphatase one (RIPPOs). Suppressor-of-Dis2-number 2 (SDS22) and Inhibitor-3 (I3), which form a ternary complex with PP1, are the first two evolved and most widely expressed RIPPOs. Their deletion causes mitotic-arrest phenotypes and is lethal in some organisms. The role of SDS22 and I3 in PP1 regulation has been a mystery for decades as they were independently identified as both activators and inhibitors of PP1. This conundrum has largely been solved by recent reports showing that SDS22 and I3 control multiple steps of the life course of PP1. Indeed, they contribute to (a) the stabilization and activation of newly translated PP1, (b) the translocation of PP1 to the nucleus, and (c) the storage of PP1 as a reserve for holoenzyme assembly. Preliminary evidence suggests that SDS22 and I3 may also function as scavengers of released or aged PP1 for re-use in holoenzyme assembly or proteolytical degradation, respectively. Hence, SDS22 and I3 are emerging as master regulators of the life course of PP1.
Collapse
Affiliation(s)
- Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
5
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
6
|
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. A crucial residue in the hydrophobic core of the solenoid structure of leucine rich repeats. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140631. [PMID: 33631375 DOI: 10.1016/j.bbapap.2021.140631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Leucine rich repeats (LRRs) with 20-30 residues form a super helix arrangement. Individual LRRs are separated into a highly conserved segment with a highly conserved (HCS) and a variable segment (VS). In LRRs short β-strands in HCS stack in parallel, while VS adopts various secondary structures. Among eleven classes recognized, only RI-like, Cysteine-containing (CC), and GALA classes adopt an α-helix. However, the repeat unit lengths are usually different from each other. We performed some analyses based on the atomic coordinates in the known LRR structures. In the VS consensuses of the three classes, position 8 in the VS part is, in common, occupied by conserved aliphatic residue adopting an α-helix. This aliphatic residue is near to the two conserved hydrophobic residues at position 4 (in the center of β-strands) in two adjacent HCS parts. The conserved aliphatic residue plays a crucial role to preserve two parallel β-strands.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar 210648, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu 059-0464, Japan; Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.
| |
Collapse
|
7
|
Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses. Arch Virol 2020; 166:43-64. [PMID: 33052487 DOI: 10.1007/s00705-020-04820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Collapse
|