1
|
Reim T, Ehrt C, Graef J, Günther S, Meents A, Rarey M. SiteMine: Large-scale binding site similarity searching in protein structure databases. Arch Pharm (Weinheim) 2024; 357:e2300661. [PMID: 38335311 DOI: 10.1002/ardp.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Drug discovery and design challenges, such as drug repurposing, analyzing protein-ligand and protein-protein complexes, ligand promiscuity studies, or function prediction, can be addressed by protein binding site similarity analysis. Although numerous tools exist, they all have individual strengths and drawbacks with regard to run time, provision of structure superpositions, and applicability to diverse application domains. Here, we introduce SiteMine, an all-in-one database-driven, alignment-providing binding site similarity search tool to tackle the most pressing challenges of binding site comparison. The performance of SiteMine is evaluated on the ProSPECCTs benchmark, showing a promising performance on most of the data sets. The method performs convincingly regarding all quality criteria for reliable binding site comparison, offering a novel state-of-the-art approach for structure-based molecular design based on binding site comparisons. In a SiteMine showcase, we discuss the high structural similarity between cathepsin L and calpain 1 binding sites and give an outlook on the impact of this finding on structure-based drug design. SiteMine is available at https://uhh.de/naomi.
Collapse
Affiliation(s)
- Thorben Reim
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Christiane Ehrt
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Joel Graef
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Matthias Rarey
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Pang M, He W, Lu X, She Y, Xie L, Kong R, Chang S. CoDock-Ligand: combined template-based docking and CNN-based scoring in ligand binding prediction. BMC Bioinformatics 2023; 24:444. [PMID: 37996806 PMCID: PMC10668353 DOI: 10.1186/s12859-023-05571-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
For ligand binding prediction, it is crucial for molecular docking programs to integrate template-based modeling with a precise scoring function. Here, we proposed the CoDock-Ligand docking method that combines template-based modeling and the GNINA scoring function, a Convolutional Neural Network-based scoring function, for the ligand binding prediction in CASP15. Among the 21 targets, we obtained successful predictions in top 5 submissions for 14 targets and partially successful predictions for 4 targets. In particular, for the most complicated target, H1114, which contains 56 metal cofactors and small molecules, our docking method successfully predicted the binding of most ligands. Analysis of the failed systems showed that the predicted receptor protein presented conformational changes in the backbone and side chains of the binding site residues, which may cause large structural deviations in the ligand binding prediction. In summary, our hybrid docking scheme was efficiently adapted to the ligand binding prediction challenges in CASP15.
Collapse
Affiliation(s)
- Mingwei Pang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Wangqiu He
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Xufeng Lu
- Primary Biotechnology Inc., Changzhou, 213125, Jiangsu, China
| | - Yuting She
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| |
Collapse
|
3
|
Machine learning for the identification of respiratory viral attachment machinery from sequences data. PLoS One 2023; 18:e0281642. [PMID: 36862685 PMCID: PMC9980812 DOI: 10.1371/journal.pone.0281642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/27/2023] [Indexed: 03/03/2023] Open
Abstract
At the outset of an emergent viral respiratory pandemic, sequence data is among the first molecular information available. As viral attachment machinery is a key target for therapeutic and prophylactic interventions, rapid identification of viral "spike" proteins from sequence can significantly accelerate the development of medical countermeasures. For six families of respiratory viruses, covering the vast majority of airborne and droplet-transmitted diseases, host cell entry is mediated by the binding of viral surface glycoproteins that interact with a host cell receptor. In this report it is shown that sequence data for an unknown virus belonging to one of the six families above provides sufficient information to identify the protein(s) responsible for viral attachment. Random forest models that take as input a set of respiratory viral sequences can classify the protein as "spike" vs. non-spike based on predicted secondary structure elements alone (with 97.3% correctly classified) or in combination with N-glycosylation related features (with 97.0% correctly classified). Models were validated through 10-fold cross-validation, bootstrapping on a class-balanced set, and an out-of-sample extra-familial validation set. Surprisingly, we showed that secondary structural elements and N-glycosylation features were sufficient for model generation. The ability to rapidly identify viral attachment machinery directly from sequence data holds the potential to accelerate the design of medical countermeasures for future pandemics. Furthermore, this approach may be extendable for the identification of other potential viral targets and for viral sequence annotation in general in the future.
Collapse
|
4
|
Eguida M, Rognan D. Estimating the Similarity between Protein Pockets. Int J Mol Sci 2022; 23:12462. [PMID: 36293316 PMCID: PMC9604425 DOI: 10.3390/ijms232012462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 10/28/2023] Open
Abstract
With the exponential increase in publicly available protein structures, the comparison of protein binding sites naturally emerged as a scientific topic to explain observations or generate hypotheses for ligand design, notably to predict ligand selectivity for on- and off-targets, explain polypharmacology, and design target-focused libraries. The current review summarizes the state-of-the-art computational methods applied to pocket detection and comparison as well as structural druggability estimates. The major strengths and weaknesses of current pocket descriptors, alignment methods, and similarity search algorithms are presented. Lastly, an exhaustive survey of both retrospective and prospective applications in diverse medicinal chemistry scenarios illustrates the capability of the existing methods and the hurdle that still needs to be overcome for more accurate predictions.
Collapse
Affiliation(s)
| | - Didier Rognan
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
5
|
Souza LF, Rocha Filho TM, Moret MA. Relating SARS-CoV-2 variants using cellular automata imaging. Sci Rep 2022; 12:10297. [PMID: 35717436 PMCID: PMC9206224 DOI: 10.1038/s41598-022-14404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
We classify the main variants of the SARS-CoV-2 virus representing a given biological sequence coded as a symbolic digital sequence and by its evolution by a cellular automata with a properly chosen rule. The spike protein, common to all variants of the SARS-CoV-2 virus, is then by the picture of the cellular automaton evolution yielding a visible representation of important features of the protein. We use information theory Hamming distance between different stages of the evolution of the cellular automaton for seven variants relative to the original Wuhan/China virus. We show that our approach allows to classify and group variants with common ancestors and same mutations. Although being a simpler method, it can be used as an alternative for building phylogenetic trees.
Collapse
Affiliation(s)
- Luryane F Souza
- CCET, Universidade Federal do Oeste da Bahia, Barreiras, 47808-021, Brazil. .,SENAI-CIMATEC, Salvador, 41650 -010, Brazil.
| | | | - Marcelo A Moret
- SENAI-CIMATEC, Salvador, 41650 -010, Brazil.,DCET, UNEB, Salvador, Brazil
| |
Collapse
|
6
|
Valdés-Jiménez A, Jiménez-González D, Kiper AK, Rinné S, Decher N, González W, Reyes-Parada M, Núñez-Vivanco G. A New Strategy for Multitarget Drug Discovery/Repositioning Through the Identification of Similar 3D Amino Acid Patterns Among Proteins Structures: The Case of Tafluprost and its Effects on Cardiac Ion Channels. Front Pharmacol 2022; 13:855792. [PMID: 35370665 PMCID: PMC8971525 DOI: 10.3389/fphar.2022.855792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels’ activity and discuss its possible repositioning as a novel antiarrhythmic drug.
Collapse
Affiliation(s)
- Alejandro Valdés-Jiménez
- Center for Bioinformatics, Simulations and Modelling, Faculty of Engineering, University of Talca, Talca, Chile
- Computer Architecture Department, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - Daniel Jiménez-González
- Computer Architecture Department, Universitat Politécnica de Catalunya, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Wendy González
- Center for Bioinformatics, Simulations and Modelling, Faculty of Engineering, University of Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| | - Gabriel Núñez-Vivanco
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| |
Collapse
|
7
|
Li G, Dai QQ, Li GB. MeCOM: A Method for Comparing Three-Dimensional Metalloenzyme Active Sites. J Chem Inf Model 2022; 62:730-739. [PMID: 35044164 DOI: 10.1021/acs.jcim.1c01335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since metalloenzymes are a large collection of metal ion(s) dependent enzymes, comparison analyses of metalloenzyme active sites are critical for metalloenzyme de novo design, function investigation, and inhibitor development. Here, we report a method named MeCOM for comparing metalloenzyme active sites. It is characterized by metal ion(s) centric active site recognition and three-dimensional superimposition using α-carbon or pharmacophore features. The test results revealed that for the given metalloenzymes, MeCOM could effectively recognize the active sites, extract active site features, and superimpose the active sites; it also could correctly identify similar active sites, differentiate dissimilar active sites, and evaluate the similarity degree. Moreover, MeCOM showed potential to establish new associations between structurally distinct metalloenzymes by active site comparison. MeCOM is freely available at https://mecom.ddtmlab.org.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|