1
|
Pshetitsky Y, Mendelman N, Buck M, Meirovitch E. Local Structures in Proteins from Microsecond Molecular Dynamics Simulations: A Symmetry-Based Perspective. J Phys Chem B 2024; 128:1557-1572. [PMID: 38350034 DOI: 10.1021/acs.jpcb.3c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We report on a new method for the characterization of local structures in proteins based on extensive molecular dynamics (MD) simulations, here, 1 μs in length. The N-H bond of the Rho GTPase binding domain of plexin-B1 (RBD) serves as a probe and the potential, u(MD), which restricts its internal motion, as a qualifier of the local dynamic structure. u(MD) is derived from the MD trajectory as a function of the polar angles, (θ, φ), which specify the N-H orientation in the protein. u(MD) is statistical in character yielding empirical descriptions. To establish more insightful methodical descriptions, we develop a comprehensive method which approximates u(MD) by combinations of analytical Wigner functions that belong to the D2h point group. These combinations, called u(simulated), make it possible to gain a new perspective of local dynamic structures in proteins based on explicit potentials/free energy surfaces and associated probability densities, entropy, and ordering. A simpler method was developed previously using 100 ns MD simulations. In that case, the traditional "perpendicular N-H ordering" setting centered at Cα-Cα with (θ, φ) = (90, 90) and generally, featuring positive φ, prevailed. u(MD) derived from 1 μs MD simulations is considerably more complex requiring substantial model enhancement. The enhanced method applies to the well-structured sections of the RBD. It only applies partly to its loops where u(MD) extends into the negative-φ region where we detect nonperpendicular N-H ordering. This arrangement requires devising new reference structures and making substantial algorithmic changes, to be performed in future work. Here, we focus on developing the comprehensive method and using it to investigate perpendicular ordering settings. We find that secondary structures (loops) exhibit varying (virtually invariant) potentials with Ag, B2u, and B1u (Ag and B2u) D2h symmetry. Application to RBD dimerization and RBD binding to the GTPase Rac1 is described in the subsequent article. Applications to other probes, proteins, and biological functions, based on explicit local potentials, probability densities, entropy, and ordering, are possible.
Collapse
Affiliation(s)
- Yaron Pshetitsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, United States
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
2
|
Wang W, Su X, Liu D, Zhang H, Wang X, Zhou Y. Predicting DNA-binding protein and coronavirus protein flexibility using protein dihedral angle and sequence feature. Proteins 2023; 91:497-507. [PMID: 36321218 PMCID: PMC9877568 DOI: 10.1002/prot.26443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
The flexibility of protein structure is related to various biological processes, such as molecular recognition, allosteric regulation, catalytic activity, and protein stability. At the molecular level, protein dynamics and flexibility are important factors to understand protein function. DNA-binding proteins and Coronavirus proteins are of great concern and relatively unique proteins. However, exploring the flexibility of DNA-binding proteins and Coronavirus proteins through experiments or calculations is a difficult process. Since protein dihedral rotational motion can be used to predict protein structural changes, it provides key information about protein local conformation. Therefore, this paper introduces a method to improve the accuracy of protein flexibility prediction, DihProFle (Prediction of DNA-binding proteins and Coronavirus proteins flexibility introduces the calculated dihedral Angle information). Based on protein dihedral Angle information, protein evolution information, and amino acid physical and chemical properties, DihProFle realizes the prediction of protein flexibility in two cases on DNA-binding proteins and Coronavirus proteins, and assigns flexibility class to each protein sequence position. In this study, compared with the flexible prediction using sequence evolution information, and physicochemical properties of amino acids, the flexible prediction accuracy based on protein dihedral Angle information, sequence evolution information and physicochemical properties of amino acids improved by 2.2% and 3.1% in the nonstrict and strict conditions, respectively. And DihProFle achieves better performance than previous methods for protein flexibility analysis. In addition, we further analyzed the correlation of amino acid properties and protein dihedral angles with residues flexibility. The results show that the charged hydrophilic residues have higher proportion in the flexible region, and the rigid region tends to be in the angular range of the protein dihedral angle (such as the ψ angle of amino acid residues is more flexible than rigid in the range of 91°-120°). Therefore, the results indicate that hydrophilic residues and protein dihedral angle information play an important role in protein flexibility.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China.,Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, Xinxiang, China
| | - Xili Su
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
| | - Dong Liu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
| | - Hongjun Zhang
- School of Computer Science and Technology, Anyang University, Anyang, China
| | - Xianfang Wang
- College of Computer Science and Technology Engineering, Henan Institute of Technology, Xinxiang, China
| | - Yun Zhou
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Ali S, Ali U, Qamar A, Zafar I, Yaqoob M, Ain QU, Rashid S, Sharma R, Nafidi HA, Bin Jardan YA, Bourhia M. Predicting the effects of rare genetic variants on oncogenic signaling pathways: A computational analysis of HRAS protein function. Front Chem 2023; 11:1173624. [PMID: 37153521 PMCID: PMC10160440 DOI: 10.3389/fchem.2023.1173624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
The HRAS gene plays a crucial role in regulating essential cellular processes for life, and this gene's misregulation is linked to the development of various types of cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of HRAS can cause detrimental mutations that disrupt wild-type protein function. In the current investigation, we have employed in-silico methodologies to anticipate the consequences of infrequent genetic variations on the functional properties of the HRAS protein. We have discovered a total of 50 nsSNPs, of which 23 were located in the exon region of the HRAS gene and denoting that they were expected to cause harm or be deleterious. Out of these 23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL], [A59L], and [G13R]) were identified as having the most delterious effect based on results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG values -3.21 kcal/mol to 0.87 kcal/mol represent the free energy change associated with protein stability upon mutation. Interestingly, we identified that the three mutations (Y4C, T58I, and Y12E) were found to improve the structural stability of the protein. We performed molecular dynamics (MD) simulations to investigate the structural and dynamic effects of HRAS mutations. Our results showed that the stable model of HRAS had a significantly lower energy value of -18756 kj/mol compared to the initial model of -108915 kj/mol. The RMSD value for the wild-type complex was 4.40 Å, and the binding energies for the G60V, G60D, and D38H mutants were -107.09 kcal/mol, -109.42 kcal/mol, and -107.18 kcal/mol, respectively as compared to wild-type HRAS protein had -105.85 kcal/mol. The result of our investigation presents convincing corroboration for the potential functional significance of nsSNPs in augmenting HRAS expression and adding to the activation of malignant oncogenic signalling pathways.
Collapse
Affiliation(s)
- Sadaqat Ali
- Medical Department, DHQ Hospital Bhawalnagr, Punjab, Pakistan
| | | | - Adeem Qamar
- Department of Pathology, Sahiwal Medical College Sahiwal, Punjab, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Muhammad Yaqoob
- Department of Life Sciences, ARID University-Barani Institute of Sciences Burewala Campus, Punjab, Pakistan
| | - Qurat ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Summya Rashid
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| |
Collapse
|