Hensler T, König B, Prévost G, Piémont Y, Köller M, König W. Leukotriene B4 generation and DNA fragmentation induced by leukocidin from Staphylococcus aureus: protective role of granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF for human neutrophils.
Infect Immun 1994;
62:2529-35. [PMID:
7514577 PMCID:
PMC186541 DOI:
10.1128/iai.62.6.2529-2535.1994]
[Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We studied the effect of leukocidin from Staphylococcus aureus V8 strains (Luk-PV) on the generation of Leukotriene B4 (LTB4) and its metabolites from human polymorphonuclear neutrophils (PMNs). Significant amounts of LTB4 were generated by PMNs after leukocidin exposure in a time- and dose-dependent manner, as shown by reversed-phase high-performance liquid chromatography analysis. In this regard, the S and F components of leukocidin acted synergistically. The calcium ionophore A23187 induced LTB4 generation, and the metabolism of exogenously added LTB4 into biologically less active omega-oxidated compounds was significantly decreased after leukocidin exposure. Priming of PMNs with granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF prior to leukocidin exposure substantially increased toxin- and calcium ionophore A23187-induced LTB4 formation. The inhibitory effects of leukocidin on mediator release were accompanied by membrane damage and DNA fragmentation, which were both restored after pretreatment with GM-CSF. The data suggest that the presence of costimulatory priming factors such as GM-CSF or G-CSF in the microenvironment of an inflammatory focus determines the pathophysiological effects induced by S. aureus leukocidin.
Collapse