1
|
Yang MJ, Kim J, Lee Y, Lee W, Park CJ. NMR Structure and Biophysical Characterization of Thermophilic Single-Stranded DNA Binding Protein from Sulfolobus Solfataricus. Int J Mol Sci 2022; 23:ijms23063099. [PMID: 35328522 PMCID: PMC8954794 DOI: 10.3390/ijms23063099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Proteins from Sulfolobus solfataricus (S. solfataricus), an extremophile, are active even at high temperatures. The single-stranded DNA (ssDNA) binding protein of S. solfataricus (SsoSSB) is overexpressed to protect ssDNA during DNA metabolism. Although SsoSSB has the potential to be applied in various areas, its structural and ssDNA binding properties at high temperatures have not been studied. We present the solution structure, backbone dynamics, and ssDNA binding properties of SsoSSB at 50 °C. The overall structure is consistent with the structures previously studied at room temperature. However, the loop between the first two β sheets, which is flexible and is expected to undergo conformational change upon ssDNA binding, shows a difference from the ssDNA bound structure. The ssDNA binding ability was maintained at high temperature, but different interactions were observed depending on the temperature. Backbone dynamics at high temperature showed that the rigidity of the structured region was well maintained. The investigation of an N-terminal deletion mutant revealed that it is important for maintaining thermostability, structure, and ssDNA binding ability. The structural and dynamic properties of SsoSSB observed at high temperature can provide information on the behavior of proteins in thermophiles at the molecular level and guide the development of new experimental techniques.
Collapse
Affiliation(s)
- Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.J.Y.); (J.K.)
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.J.Y.); (J.K.)
| | - Yeongjoon Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA;
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA;
- Correspondence: (W.L.); (C.-J.P.); Tel.: +1-303-315-7672 (W.L.); +82-62-715-3630 (C.-J.P.)
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.J.Y.); (J.K.)
- Correspondence: (W.L.); (C.-J.P.); Tel.: +1-303-315-7672 (W.L.); +82-62-715-3630 (C.-J.P.)
| |
Collapse
|
2
|
Protein Engineering of a Metalloprotease in Order to Improve Organic Solvents Stability and Activity. Catal Letters 2019. [DOI: 10.1007/s10562-019-03044-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Rathi PC, Fulton A, Jaeger KE, Gohlke H. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis. PLoS Comput Biol 2016; 12:e1004754. [PMID: 27003415 PMCID: PMC4803202 DOI: 10.1371/journal.pcbi.1004754] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/14/2016] [Indexed: 11/29/2022] Open
Abstract
Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein’s thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded) in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability) over random classification is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05). These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability. Protein thermostability is a crucial factor for biotechnological enzyme applications. However, performance studies of computational approaches for predicting effects of mutations on protein (thermo)stability have suggested that there is still room for improvement. We describe and validate a novel and unique strategy to predict optimal amino acid substitutions at structural weak spots. At variance with other rational approaches, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state is the underlying cause for thermostability. When applied prospectively on lipase LipA from Bacillus subtilis, a high success rate in predicting thermostabilized lipase variants and a remarkably large increase in their thermostability is achieved. This demonstrates the value of the novel strategy, which extends the existing portfolio of methods for rational protein design.
Collapse
Affiliation(s)
- Prakash Chandra Rathi
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (KEJ); (HG)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (KEJ); (HG)
| |
Collapse
|
4
|
Zhou C, Xue Y, Ma Y. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnol 2015; 15:97. [PMID: 26490269 PMCID: PMC4618444 DOI: 10.1186/s12896-015-0197-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/19/2015] [Indexed: 11/24/2022] Open
Abstract
Background Thermal stable α-glucosidases with transglycosylation activity could be applied to the industrial production of oligosaccharides as well as conjugation of sugars to biologically useful materials. Therefore, α-glucosidases isolated from thermophiles have gained attention over the past decade. In this study, the characterization of a highly thermostable α-glucosidase and its thermostability improved mutant from newly isolated strain Thermus thermophilus TC11 were investigated. Results The recombinant α-glucosidase (TtAG) from Thermus thermophilus TC11 was expressed in Escherichia coli BL21 (DE3) and purified. The purified enzyme had a molecular mass of 184 kDa and consisted of 59-kDa subunits; it showed hydrolytic activity for pNP-α-d-glucopyranoside (pNPG), sucrose, trehalose, panose, and isomaltooligosaccharides and very low activity for maltose. The highest specific activity of 288.96 U/mg was observed for pNPG at 90 °C and pH 5.0; Pb2+ provided a 20 % activity increase. TtAG was stable at 70 °C for more than 7 h and had a half-life of 195 min at 80 °C and 130 min at 90 °C. Transglycosylation activity was also observed with sucrose and trehalose as substrates. TtAG showed differences on substrate specificity, transglycosylation, multimerization, effects of metal ions and optimal pH from other reported Thermus α-glucosidases. One single-substitution TtAG mutant Q10Y with improved thermostability was also obtained from random mutagenesis library. The site-saturation mutagenesis and structural modelling analysis indicated that Q10Y substitution stabilized TtAG structure via additional hydrogen bonding and hydrophobic interactions. Conclusion Our findings indicate that TtAG is a highly thermostable and more acidic α-glucosidase distinct from other reported Thermus α-glucosidases. And this work also provides new insights into the catalytic and thermal tolerance mechanisms of α-glucosidases, which may guide molecular engineering of α-glucosidase and other thermostable enzymes for industrial application. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,National Engineering Lab for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,National Engineering Lab for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China. .,National Engineering Lab for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
5
|
van Beek HL, Wijma HJ, Fromont L, Janssen DB, Fraaije MW. Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue. FEBS Open Bio 2014; 4:168-74. [PMID: 24649397 PMCID: PMC3953729 DOI: 10.1016/j.fob.2014.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
Cyclohexanone monooxygenase was stabilized by an in silico designed disulfide bond. Stabilizing disulfide bonds were successfully designed based on a model structure. The half-life at 30 °C was increased 12-fold for the mutant enzyme. The apparent melting point was increased by 6 °C for the mutant enzyme. The most stabilizing disulfide bond spans only one residue.
Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer–Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C–A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.
Collapse
Affiliation(s)
- Hugo L van Beek
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lucie Fromont
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W Fraaije
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:330-8. [DOI: 10.1016/j.bbapap.2013.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/12/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022]
|
7
|
Radestock S, Gohlke H. Protein rigidity and thermophilic adaptation. Proteins 2011; 79:1089-108. [DOI: 10.1002/prot.22946] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/28/2010] [Accepted: 11/07/2010] [Indexed: 11/05/2022]
|
8
|
Zhou C, Xue Y, Ma Y. Enhancing the thermostability of alpha-glucosidase from Thermoanaerobacter tengcongensis MB4 by single proline substitution. J Biosci Bioeng 2010; 110:12-7. [PMID: 20541109 DOI: 10.1016/j.jbiosc.2009.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/28/2009] [Accepted: 12/03/2009] [Indexed: 11/26/2022]
Abstract
Thermostability can be increased by introducing prolines at suitable sites in target proteins. In this study, we compared five thermostable alpha-glucosidases and the moderate thermostable alpha-glucosidase (TtGluA) from Thermoanaerobacter tengcongensis MB4. Based on the amino acid sequence alignment, four sites (Leu152, Asn208, Lys285, and Thr430) of TtGluA were chosen for proline substitution to improve its thermostability. Thermostability of mutants L152P, K285P, and T430P increased evidently, but no thermostability improvement was observed for N208P. Compared to the wild-type enzyme, T(50)(15) of T430P had a rise of 2 degrees C without distinct loss of activity. However, T(50)(15) values of L152P and K285P increased 2 degrees C and 10.5 degrees C, respectively, while retaining activity of only 26.6% and 24.9% of wild-type enzyme. The K(m) of L152P, K285P, T430P and wild-type enzyme was 1.61, 0.32, 1.64, and 1.08 mM, respectively. These indicate that the selected sites are not only important for the thermostability but also related to the substrate binding and catalytic activity of TtGluA. The CD spectra analysis of the improved mutants and wild-type enzyme showed no distinct changes in their secondary structures. Combining analysis of secondary structure prediction and 3D structure modeling, the proline substitution at the three sites stabilized TtGluA possibly by reducing the flexibility of loop and random coil or (and) increasing the hydrophobic effect at these strategic regions with no evident structure change.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Lab of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | | | | |
Collapse
|
9
|
Eijsink VGH, Vriend G, Van Den Burg B. Engineering a Hyperstable Enzyme by Manipulation of Early Steps in the Unfolding Process. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420108992029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Affiliation(s)
- Jin Kim Montclare
- Department of Chemical and Biological Sciences, Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201, USA
| | | |
Collapse
|
11
|
|
12
|
Eijsink VGH, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G. Rational engineering of enzyme stability. J Biotechnol 2004; 113:105-20. [PMID: 15380651 DOI: 10.1016/j.jbiotec.2004.03.026] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/16/2004] [Accepted: 03/04/2004] [Indexed: 11/19/2022]
Abstract
During the past 15 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to protein design, and directed evolution. Concomitantly, the purification and characterization of naturally occurring hyperstable proteins has added to our understanding of protein stability. Along the way, many strategies for rational protein stabilization have been proposed, some of which (e.g. entropic stabilization by introduction of prolines or disulfide bridges) have reasonable success rates. On the other hand, comparative studies and efforts in directed evolution have revealed that there are many mutational strategies that lead to high stability, some of which are not easy to define and rationalize. Recent developments in the field include increasing awareness of the importance of the protein surface for stability, as well as the notion that normally a very limited number of mutations can yield a large increase in stability. Another development concerns the notion that there is a fundamental difference between the "laboratory stability" of small pure proteins that unfold reversibly and completely at high temperatures and "industrial stability", which is usually governed by partial unfolding processes followed by some kind of irreversible inactivation process (e.g. aggregation). Provided that one has sufficient knowledge of the mechanism of thermal inactivation, successful and efficient rational stabilization of enzymes can be achieved.
Collapse
Affiliation(s)
- Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, PO Box 5040, N-1432 As.
| | | | | | | | | | | | | |
Collapse
|
13
|
de Kreij A, van den Burg B, Veltman OR, Vriend G, Venema G, Eijsink VG. The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4985-91. [PMID: 11559368 DOI: 10.1046/j.0014-2956.2001.02434.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hydrophobic S1' subsite is one of the major determinants of the substrate specificity of thermolysin and related M4 family proteases. In the thermolysin-like protease (TLP) produced by Bacillus stearothermophilus (TLP-ste), the hydrophobic S1' subsite is mainly formed by Phe130, Phe133, Val139 and Leu202. In the present study, we have examined the effects of replacing Leu202 by smaller (Gly, Ala, Val) and larger (Phe, Tyr) hydrophobic residues. The mutational effects showed that the wild-type S1' pocket is optimal for binding leucine side chains. Reduction of the size of residue 202 resulted in a higher efficiency towards substrates with Phe in the P1' position. Rather unexpectedly, the Leu202-->Phe and Leu202-->Tyr mutations, which were expected to decrease the size of the S1' subsite, resulted in a large increase in activity towards dipeptide substrates with Phe in the P1' position. This is probably due to the fact that 202Phe and 202Tyr adopt a second possible rotamer that opens up the subsite compared to Leu202, and also favours interactions with the substrate. To validate these results, we constructed variants of thermolysin with changes in the S1' subsite. Thermolysin and TLP-ste variants with identical S1' subsites were highly similar in terms of their preference for Phe vs. Leu in the P1' position.
Collapse
Affiliation(s)
- A de Kreij
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan, NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
de Kreij A, Venema G, van den Burg B. Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids. J Biol Chem 2000; 275:31115-20. [PMID: 10869357 DOI: 10.1074/jbc.m003889200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The members of the M4 peptidase family are involved in processes as diverse as pathogenicity and industrial applications. For the first time a number of M4 family members, also known as thermolysin-like proteases, has been characterized with an identical substrate set and a uniform set of assay conditions. Characterization with peptide substrates as well as high performance liquid chromatography analysis of beta-casein digests shows that the M4 family is a homogeneous family in terms of catalysis, even though there is a significant degree of amino acid sequence variation. The results of this study show that differences in substrate specificity within the M4 family do not correlate with overall sequence differences but depend on a small number of identifiable amino acids. Indeed, molecular modeling followed by site-directed mutagenesis of one of the substrate binding pocket residues of the thermolysin-like proteases of Bacillus stearothermophilus converted the catalytic characteristics of this variant into that of thermolysin.
Collapse
Affiliation(s)
- A de Kreij
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
15
|
Zhao H, Arnold FH. Directed evolution converts subtilisin E into a functional equivalent of thermitase. PROTEIN ENGINEERING 1999; 12:47-53. [PMID: 10065710 DOI: 10.1093/protein/12.1.47] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We used directed evolution to convert Bacillus subtilis subtilisin E into an enzyme functionally equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris. Five generations of random mutagenesis, recombination and screening created subtilisin E 5-3H5, whose half-life at 83 degrees C (3.5 min) and temperature optimum for activity (Topt, 76 degrees C) are identical with those of thermitase. The Topt of the evolved enzyme is 17 degrees C higher and its half-life at 65 degrees C is >200 times that of wild-type subtilisin E. In addition, 5-3H5 is more active towards the hydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-type at all temperatures from 10 to 90 degrees C. Thermitase differs from subtilisin E at 157 amino acid positions. However, only eight amino acid substitutions were sufficient to convert subtilisin E into an enzyme equally thermostable. The eight substitutions, which include known stabilizing mutations (N218S, N76D) and also several not previously reported, are distributed over the surface of the enzyme. Only two (N218S, N181D) are found in thermitase. Directed evolution provides a powerful tool to unveil mechanisms of thermal adaptation and is an effective and efficient approach to increasing thermostability without compromising enzyme activity.
Collapse
Affiliation(s)
- H Zhao
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
16
|
Vriend G, Berendsen HJ, van den Burg B, Venema G, Eijsink VG. Early steps in the unfolding of thermolysin-like proteases. J Biol Chem 1998; 273:35074-7. [PMID: 9857041 DOI: 10.1074/jbc.273.52.35074] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several series of site-directed mutations in thermolysin-like proteases are presented that show remarkable nonadditivity in their effect on thermal stability. A simple model is proposed that relates this nonadditivity to the occurrence of independent partial unfolding processes that occur in parallel at elevated temperatures. To prove this model, a thermolysin-like protease was designed in which two mutations located approximately 35 A apart in the structure individually exert small stabilizing effects of 2.3 and 4. 1 degreesC, respectively, but when combined stabilize the protease by 14.6 degreesC. This overadditivity, which follows directly from the model, confirms that unfolding of this engineered protease starts in parallel at two different regions of the protein.
Collapse
Affiliation(s)
- G Vriend
- EMBL, BIOcomputing, Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
17
|
Veltman OR, Vriend G, Hardy F, Mansfeld J, van den Burg B, Venema G, Eijsink VG. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:433-40. [PMID: 9346299 DOI: 10.1111/j.1432-1033.1997.00433.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Site-directed mutagenesis was used to assess the contribution of individual residues and a bound calcium in the 55-69 region of the thermolysin-like protease of Bacillus stearothermophilus (TLP-ste) to thermal stability. The importance of the 55-69 region was reflected by finding that almost all mutations had drastic effects on stability. These effects (both stabilizing and destabilizing) were obtained by mutations affecting main chain flexibility, as well as by mutations affecting the interaction between the 55-69 region and the rest of the protease molecule. The calcium-dependency of stability could be largely abolished by mutating one of its ligands (Asp57 or Asp59). In the case of the Asp57-->Ser mutation, the accompanying loss in stability was modest compared with the effects of other destabilizing mutations or the effects of (combinations of) stabilizing mutations. The detailed knowledge of the stability-determining region of TLP-ste permits effective rational design of stabilizing mutations, which, presumably, are also useful for related TLP such as thermolysin. This is demonstrated by the successful design of a stabilizing salt bridge involving residues 65 and 11.
Collapse
Affiliation(s)
- O R Veltman
- Department of Genetics, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, Venema G, Ulbrich-Hofmann R, Eijsink VG. Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J Biol Chem 1997; 272:11152-6. [PMID: 9111013 DOI: 10.1074/jbc.272.17.11152] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The thermal inactivation of broad specificity proteases such as thermolysin and subtilisin is initiated by partial unfolding processes that render the enzyme susceptible to autolysis. Previous studies have revealed that a surface-located region in the N-terminal domain of the thermolysin-like protease produced by Bacillus stearothermophilus is crucial for thermal stability. In this region a disulfide bridge between residues 8 and 60 was designed by molecular modelling, and the corresponding single and double cysteine mutants were constructed. The disulfide bridge was spontaneously formed in vivo and resulted in a drastic stabilization of the enzyme. This stabilization presents one of the very few examples of successful stabilization of a broad specificity protease by a designed disulfide bond. We propose that the success of the present stabilization strategy is the result of the localization and mutation of an area of the molecule involved in the partial unfolding processes that determine thermal stability.
Collapse
Affiliation(s)
- J Mansfeld
- Martin-Luther University Halle-Wittenberg, Institute of Biotechnology, Kurt-Mothes-Strasse 3, D-06120 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Worth GA, Lecuyer C, Wade RC. TRAJAN: a tool for analyzing trajectories from molecular simulations. JOURNAL OF MOLECULAR GRAPHICS 1996; 14:173-82, 146-7. [PMID: 8901645 DOI: 10.1016/s0263-7855(96)00059-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular dynamics simulations of biological systems are notoriously difficult to analyze because of the complexity of the information that contain. We describe a new method for analyzing trajectories from simulations in order to extract important features of the motion. The trajectory of each atom is partitioned into conformation wells, in each of which its motion is assumed to be predominantly harmonic oscillation around an average position. Thus each atom moves anharmonically through a sequence of wells during the trajectory. The movement of atoms between wells, their ellipsoids of motion within each well, and correlations in the motion of atoms are quantified and can be visualized with molecular graphics. The TRAJAN analysis procedure is applicable to trajectories from equilibrium and nonequilibrium simulations and is not restricted to molecular dynamics simulations. Its application is demonstrated for a range of model systems.
Collapse
Affiliation(s)
- G A Worth
- European Molecular Biology Laboratory, Heidelberg. Germany
| | | | | |
Collapse
|
20
|
Eijsink VG, Veltman OR, Aukema W, Vriend G, Venema G. Structural determinants of the stability of thermolysin-like proteinases. NATURE STRUCTURAL BIOLOGY 1995; 2:374-9. [PMID: 7664094 DOI: 10.1038/nsb0595-374] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thermolysin is a member of a family of homologous proteinases which differ in their resistance to thermally induced unfolding and subsequent autolytic degradation. Site-directed mutagenesis studies of the thermolysin-like proteinase (TLP) from Bacillus stearothermophilus (TLP-ste) show that its reduced resistance to thermally induced autolysis, as compared to thermolysin, is due to only some of the 44 naturally occurring amino-acid differences between them. In fact TLP-ste becomes more resistant than thermolysin by mutation of just a few of these amino-acids. The crucial differences are all localized to a solvent-exposed region in the N-terminal domain of TLP-ste.
Collapse
Affiliation(s)
- V G Eijsink
- Department of Genetics, Center for Biological Sciences, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Hubbard SJ, Eisenmenger F, Thornton JM. Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 1994; 3:757-68. [PMID: 7520312 PMCID: PMC2142727 DOI: 10.1002/pro.5560030505] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous analyses of limited proteolytic sites within native, folded protein structures have shown that a significant conformational change is required in order to facilitate binding into the active site of the attacking proteinase. For the serine proteinases, the optimum conformation to match the proteinase binding-site geometry has been well characterized crystallographically by the conserved main-chain geometry of the reactive site loops of their protein inhibitors. A good substrate must adopt a conformation very similar to this "target" main-chain conformation prior to cleavage. Using a "loop-closure" modeling approach, we have tested the ability of a set of tryptic-limited proteolytic sites to achieve this target conformation and further tested their suitability for cleavage. The results show that in most cases, significant changes in the conformation of at least 12 residues are required. All the putative tryptic cleavage sites in 1 protein, elastase, were also modeled and tested to compare the results to the actual nicksite in that protein. These results strongly suggest that large local motions proximate to the scissile bond are required for proteolysis, and it is this ability to unfold locally without perturbing the overall protein conformation that is the prime determinant for limited proteolysis.
Collapse
Affiliation(s)
- S J Hubbard
- Department of Biochemistry and Molecular Biology, University College, London, United Kingdom
| | | | | |
Collapse
|
22
|
Van den Burg B, Dijkstra BW, Vriend G, Van der Vinne B, Venema G, Eijsink VG. Protein stabilization by hydrophobic interactions at the surface. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:981-5. [PMID: 8143751 DOI: 10.1111/j.1432-1033.1994.tb18702.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The contribution of the solvent-exposed residue 63 to thermal stability of the thermolysin-like neutral protease of Bacillus stearothermophilus was studied by analyzing the effect of twelve different amino acid substitutions at this position. The thermal stability of the enzyme was increased considerably by introducing Arg, Lys or bulky hydrophobic amino acids. In general, the effects of the mutations showed that hydrophobic contacts in this surface-located region of the protein are a major determinant of thermal stability. This observation contrasts with general concepts concerning the contribution of surface-located residues and surface hydrophobicity to protein stability and indicates new ways for protein stabilization by site-directed mutagenesis.
Collapse
Affiliation(s)
- B Van den Burg
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Vriend G, Eijsink V. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases. J Comput Aided Mol Des 1993; 7:367-96. [PMID: 8229092 DOI: 10.1007/bf02337558] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cereus. Several new techniques have been developed to improve the model-building procedures. Also a 'model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability of the NP by a large amount are located in a relatively weak region (or more precisely, they affect a local unfolding pathway with a relatively low free energy of activation). One weak region, that is supposedly important in the early steps of NP unfolding, has been determined in the NP of B. stearothermophilus. After eliminating this weakest link a drastic increase in thermostability was observed and the search for the second-weakest link, or the second-lowest energy local unfolding pathway is now in progress. Hopefully, this approach can be used to unravel the entire early phase of unfolding.
Collapse
Affiliation(s)
- G Vriend
- EMBL, Protein Design Group, Heidelberg, Germany
| | | |
Collapse
|
24
|
Hardy F, Vriend G, Veltman OR, van der Vinne B, Venema G, Eijsink VG. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 1993; 317:89-92. [PMID: 8428638 DOI: 10.1016/0014-5793(93)81497-n] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thermostability of neutral proteases has been shown to depend on autolysis which presumably occurs in flexible regions of the protein. In an attempt to rigidify such a region in the neutral protease of Bacillus stearothermophilus, residues in the solvent-exposed 63-69 loop were replaced by proline. The mutations caused large positive (Ser-65-->Pro, Ala-69-->Pro) or negative (Thr-63-->Pro, Tyr-66-->Pro) changes in thermostability, which were explained on the basis of molecular modelling of the mutant proteins. The data show that the introduction of prolines at carefully selected positions in the protein can be a powerful method for stabilization.
Collapse
Affiliation(s)
- F Hardy
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Structural Determinants of the Thermostability of thermolysin-Like Bacillus Neutral Proteases. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/b978-0-444-89372-7.50016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|