1
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Ranaudo A, Giulini M, Pelissou Ayuso A, Bonvin AMJJ. Modeling Protein-Glycan Interactions with HADDOCK. J Chem Inf Model 2024; 64:7816-7825. [PMID: 39360946 PMCID: PMC11480977 DOI: 10.1021/acs.jcim.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
The term glycan refers to a broad category of molecules composed of monosaccharide units linked to each other in a variety of ways, whose structural diversity is related to different functions in living organisms. Among others, glycans are recognized by proteins with the aim of carrying information and for signaling purposes. Determining the three-dimensional structures of protein-glycan complexes is essential both for the understanding of the mechanisms glycans are involved in and for applications such as drug design. In this context, molecular docking approaches are of undoubted importance as complementary approaches to experiments. In this study, we show how high ambiguity-driven DOCKing (HADDOCK) can be efficiently used for the prediction of protein-glycan complexes. Using a benchmark of 89 complexes, starting from their bound or unbound forms, and assuming some knowledge of the binding site on the protein, our protocol reaches a 70% and 40% top 5 success rate on bound and unbound data sets, respectively. We show that the main limiting factor is related to the complexity of the glycan to be modeled and the associated conformational flexibility.
Collapse
Affiliation(s)
- Anna Ranaudo
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza Della Scienza 1, Milan 20126, Italy
- Bijvoet
Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Marco Giulini
- Bijvoet
Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Angela Pelissou Ayuso
- Bijvoet
Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet
Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| |
Collapse
|
3
|
Hill GR, Yang JC, Easton LE, Cerdan R, McLaughlin SH, Stott K, Travers AA, Neuhaus D. A Single Interfacial Point Mutation Rescues Solution Structure Determination of the Complex of HMG-D with a DNA Bulge. Chembiochem 2024:e202400395. [PMID: 39145407 DOI: 10.1002/cbic.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Broadening of signals from atoms at interfaces can often be a limiting factor in applying solution NMR to the structure determination of complexes. Common contributors to such problems include exchange between free and bound states and the increased molecular weight of complexes relative to the free components, but another cause that can be more difficult to deal with occurs when conformational dynamics within the interface takes place at an intermediate rate on the chemical shift timescale. In this work we show how a carefully chosen mutation in the protein HMG-D rescued such a situation, making possible high-resolution structure determination of its complex with a dA2 bulge DNA ligand designed to mimic a natural DNA bend, and thereby revealing a new spatial organization of the complex.
Collapse
Affiliation(s)
- Guy R Hill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Laura E Easton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Rachel Cerdan
- LPHI, Univ. Montpellier, CNRS, Inserm, Place Eugène Bataillon, 34095, Montpellier, France
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Andrew A Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
4
|
Suladze S, Sarkar R, Rodina N, Bokvist K, Krewinkel M, Scheps D, Nagel N, Bardiaux B, Reif B. Atomic resolution structure of full-length human insulin fibrils. Proc Natl Acad Sci U S A 2024; 121:e2401458121. [PMID: 38809711 PMCID: PMC11161806 DOI: 10.1073/pnas.2401458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.
Collapse
Affiliation(s)
- Saba Suladze
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Riddhiman Sarkar
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Natalia Rodina
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
| | - Krister Bokvist
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Frankfurt65926, Germany
| | - Manuel Krewinkel
- Sanofi-Aventis Deutschland GmbH, Manufacturing Science and Technology, Industriepark Höchst, Frankfurt65926, Germany
| | - Daniel Scheps
- Chemistry Manufacturing & Controls Microbial Platform, Sanofi-Aventis Deutschland GmbH, Microbial Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Tides Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Department of Structural Biology and Chemistry, Structural Bioinformatics Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
- Institut Pasteur, Department of Structural Biology and Chemistry, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
| | - Bernd Reif
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| |
Collapse
|
5
|
Koukos PI, Réau M, Bonvin AMJJ. Shape-Restrained Modeling of Protein-Small-Molecule Complexes with High Ambiguity Driven DOCKing. J Chem Inf Model 2021; 61:4807-4818. [PMID: 34436890 PMCID: PMC8479858 DOI: 10.1021/acs.jcim.1c00796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Small-molecule docking remains one of the most valuable computational techniques for the structure prediction of protein-small-molecule complexes. It allows us to study the interactions between compounds and the protein receptors they target at atomic detail in a timely and efficient manner. Here, we present a new protocol in HADDOCK (High Ambiguity Driven DOCKing), our integrative modeling platform, which incorporates homology information for both receptor and compounds. It makes use of HADDOCK's unique ability to integrate information in the simulation to drive it toward conformations, which agree with the provided data. The focal point is the use of shape restraints derived from homologous compounds bound to the target receptors. We have developed two protocols: in the first, the shape is composed of dummy atom beads based on the position of the heavy atoms of the homologous template compound, whereas in the second, the shape is additionally annotated with pharmacophore data for some or all beads. For both protocols, ambiguous distance restraints are subsequently defined between those beads and the heavy atoms of the ligand to be docked. We have benchmarked the performance of these protocols with a fully unbound version of the widely used DUD-E (Database of Useful Decoys-Enhanced) dataset. In this unbound docking scenario, our template/shape-based docking protocol reaches an overall success rate of 81% when a reliable template can be identified (which was the case for 99 out of 102 complexes in the DUD-E dataset), which is close to the best results reported for bound docking on the DUD-E dataset.
Collapse
Affiliation(s)
- Panagiotis I Koukos
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht 3584CH, The Netherlands
| | - Manon Réau
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht 3584CH, The Netherlands
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht 3584CH, The Netherlands
| |
Collapse
|
6
|
Cardone C, Caseau CM, Bardiaux B, Thureaux A, Galloux M, Bajorek M, Eléouët JF, Litaudon M, Bontems F, Sizun C. A Structural and Dynamic Analysis of the Partially Disordered Polymerase-Binding Domain in RSV Phosphoprotein. Biomolecules 2021; 11:biom11081225. [PMID: 34439894 PMCID: PMC8392014 DOI: 10.3390/biom11081225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD–PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD–PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.
Collapse
Affiliation(s)
- Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Claire-Marie Caseau
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 78015 Paris, France;
| | | | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Monika Bajorek
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
- Correspondence:
| |
Collapse
|
7
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
8
|
Abstract
Neurodegenerative disorders are frequently associated with β-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical β-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.
Collapse
|
9
|
Allain F, Mareuil F, Ménager H, Nilges M, Bardiaux B. ARIAweb: a server for automated NMR structure calculation. Nucleic Acids Res 2020; 48:W41-W47. [PMID: 32383755 PMCID: PMC7319541 DOI: 10.1093/nar/gkaa362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a method of choice to study the dynamics and determine the atomic structure of macromolecules in solution. The standalone program ARIA (Ambiguous Restraints for Iterative Assignment) for automated assignment of nuclear Overhauser enhancement (NOE) data and structure calculation is well established in the NMR community. To ultimately provide a perfectly transparent and easy to use service, we designed an online user interface to ARIA with additional functionalities. Data conversion, structure calculation setup and execution, followed by interactive visualization of the generated 3D structures are all integrated in ARIAweb and freely accessible at https://ariaweb.pasteur.fr.
Collapse
Affiliation(s)
- Fabrice Allain
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, Paris, 75015, France
| | - Fabien Mareuil
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, CNRS USR 3756, Institut Pasteur, Paris, 75015, France
| | - Hervé Ménager
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, CNRS USR 3756, Institut Pasteur, Paris, 75015, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, Paris, 75015, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
10
|
Kukuk L, Dingley AJ, Granzin J, Nagel-Steger L, Thiagarajan-Rosenkranz P, Ciupka D, Hänel K, Batra-Safferling R, Pacheco V, Stoldt M, Pfeffer K, Beer-Hammer S, Willbold D, Koenig BW. Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association. Sci Rep 2019; 9:54. [PMID: 30631134 PMCID: PMC6328559 DOI: 10.1038/s41598-018-37185-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022] Open
Abstract
Sterile alpha motif (SAM) domains are protein interaction modules that are involved in a diverse range of biological functions such as transcriptional and translational regulation, cellular signalling, and regulation of developmental processes. SH3 domain-containing protein expressed in lymphocytes 1 (SLy1) is involved in immune regulation and contains a SAM domain of unknown function. In this report, the structure of the SLy1 SAM domain was solved and revealed that this SAM domain forms a symmetric homodimer through a novel interface. The interface consists primarily of the two long C-terminal helices, α5 and α5', of the domains packing against each other. The dimerization is characterized by a dissociation constant in the lower micromolar range. A SLy1 SAM domain construct with an extended N-terminus containing five additional amino acids of the SLy1 sequence further increases the stability of the homodimer, making the SLy1 SAM dimer two orders of magnitude more stable than previously studied SAM homodimers, suggesting that the SLy1 SAM dimerization is of functional significance. The SLy1 SAM homodimer contains an exposed mid-loop surface on each monomer, which may provide a scaffold for mediating interactions with other SAM domain-containing proteins via a typical mid-loop-end-helix interface.
Collapse
Affiliation(s)
- Laura Kukuk
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Andrew J Dingley
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Joachim Granzin
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Pallavi Thiagarajan-Rosenkranz
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel Ciupka
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Karen Hänel
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Renu Batra-Safferling
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Victor Pacheco
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany
| | - Matthias Stoldt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sandra Beer-Hammer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, und Interfakultäres Zentrum für Pharmakogenomik und Arzneimittelforschung (ICePhA), Eberhard-Karls-Universität Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Bernd W Koenig
- Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
11
|
Marcos E, Chidyausiku TM, McShan AC, Evangelidis T, Nerli S, Carter L, Nivón LG, Davis A, Oberdorfer G, Tripsianes K, Sgourakis NG, Baker D. De novo design of a non-local β-sheet protein with high stability and accuracy. Nat Struct Mol Biol 2018; 25:1028-1034. [PMID: 30374087 PMCID: PMC6219906 DOI: 10.1038/s41594-018-0141-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 11/08/2022]
Abstract
β-sheet proteins carry out critical functions in biology, and hence are attractive scaffolds for computational protein design. Despite this potential, de novo design of all-β-sheet proteins from first principles lags far behind the design of all-α or mixed-αβ domains owing to their non-local nature and the tendency of exposed β-strand edges to aggregate. Through study of loops connecting unpaired β-strands (β-arches), we have identified a series of structural relationships between loop geometry, side chain directionality and β-strand length that arise from hydrogen bonding and packing constraints on regular β-sheet structures. We use these rules to de novo design jellyroll structures with double-stranded β-helices formed by eight antiparallel β-strands. The nuclear magnetic resonance structure of a hyperthermostable design closely matched the computational model, demonstrating accurate control over the β-sheet structure and loop geometry. Our results open the door to the design of a broad range of non-local β-sheet protein structures.
Collapse
Affiliation(s)
- Enrique Marcos
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Tamuka M Chidyausiku
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Thomas Evangelidis
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lucas G Nivón
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Cyrus Biotechnology, Seattle, WA, USA
| | - Audrey Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Amazon, Seattle, WA, USA
| | - Gustav Oberdorfer
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Abstract
Chemical Shift-Rosetta (CS-Rosetta) is an automated method that employs NMR chemical shifts to model protein structures de novo. In this chapter, we introduce the terminology and central concepts of CS-Rosetta. We describe the architecture and functionality of automatic NOESY assignment (AutoNOE) and structure determination protocols (Abrelax and RASREC) within the CS-Rosetta framework. We further demonstrate how CS-Rosetta can discriminate near-native structures against a large conformational search space using restraints obtained from NMR data, and/or sequence and structure homology. We highlight how CS-Rosetta can be combined with alternative automated approaches to (i) model oligomeric systems and (ii) create NMR-based structure determination pipeline. To show its practical applicability, we emphasize on the computational requirements and performance of CS-Rosetta for protein targets of varying molecular weight and complexity. Finally, we discuss the current Python interface, which enables easy execution of protocols for rapid and accurate high-resolution structure determination.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
13
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
14
|
Vreven T, Schweppe DK, Chavez JD, Weisbrod CR, Shibata S, Zheng C, Bruce JE, Weng Z. Integrating Cross-Linking Experiments with Ab Initio Protein-Protein Docking. J Mol Biol 2018; 430:1814-1828. [PMID: 29665372 DOI: 10.1016/j.jmb.2018.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
Abstract
Ab initio protein-protein docking algorithms often rely on experimental data to identify the most likely complex structure. We integrated protein-protein docking with the experimental data of chemical cross-linking followed by mass spectrometry. We tested our approach using 19 cases that resulted from an exhaustive search of the Protein Data Bank for protein complexes with cross-links identified in our experiments. We implemented cross-links as constraints based on Euclidean distance or void-volume distance. For most test cases, the rank of the top-scoring near-native prediction was improved by at least twofold compared with docking without the cross-link information, and the success rate for the top 5 predictions nearly tripled. Our results demonstrate the delicate balance between retaining correct predictions and eliminating false positives. Several test cases had multiple components with distinct interfaces, and we present an approach for assigning cross-links to the interfaces. Employing the symmetry information for these cases further improved the performance of complex structure prediction.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Devin K Schweppe
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Juan D Chavez
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Chad R Weisbrod
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Sayaka Shibata
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Chunxiang Zheng
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - James E Bruce
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 2018; 138-139:26-38. [DOI: 10.1016/j.ymeth.2018.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
|
16
|
Targeting SxIP-EB1 interaction: An integrated approach to the discovery of small molecule modulators of dynamic binding sites. Sci Rep 2017; 7:15533. [PMID: 29138501 PMCID: PMC5686072 DOI: 10.1038/s41598-017-15502-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
End binding protein 1 (EB1) is a key element in the complex network of protein-protein interactions at microtubule (MT) growing ends, which has a fundamental role in MT polymerisation. EB1 is an important protein target as it is involved in regulating MT dynamic behaviour, and has been associated with several disease states, such as cancer and neuronal diseases. Diverse EB1 binding partners are recognised through a conserved four amino acid motif, (serine-X-isoleucine-proline) which exists within an intrinsically disordered region. Here we report the use of a multidisciplinary computational and experimental approach for the discovery of the first small molecule scaffold which targets the EB1 recruiting domain. This approach includes virtual screening (structure- and ligand-based design) and multiparameter compound selection. Subsequent studies on the selected compounds enabled the elucidation of the NMR structures of the C-terminal domain of EB1 in the free form and complexed with a small molecule. These structures show that the binding site is not preformed in solution, and ligand binding is fundamental for the binding site formation. This work is a successful demonstration of the combination of modelling and experimental methods to enable the discovery of compounds which bind to these challenging systems.
Collapse
|
17
|
Schwieters CD, Bermejo GA, Clore GM. Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci 2017; 27:26-40. [PMID: 28766807 DOI: 10.1002/pro.3248] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022]
Abstract
Xplor-NIH is a popular software package for biomolecular structure determination from nuclear magnetic resonance (NMR) and other data sources. Here, some of Xplor-NIH's most useful data-associated energy terms are reviewed, including newer alternative options for using residual dipolar coupling data in structure calculations. Further, we discuss new developments in the implementation of strict symmetry for the calculation of symmetric homo-oligomers, and in the representation of the system as an ensemble of structures to account for motional effects. Finally, the different available force fields are presented, among other Xplor-NIH capabilities.
Collapse
Affiliation(s)
- Charles D Schwieters
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, 20892-5624
| | - Guillermo A Bermejo
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, 20892-5624
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| |
Collapse
|
18
|
Kaplan AR, Brady MR, Maciejewski MW, Kammerer RA, Alexandrescu AT. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix. Biochemistry 2017; 56:1604-1619. [PMID: 28230348 DOI: 10.1021/acs.biochem.6b00634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1H-15N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13C rotating frame T1 relaxation (T1ρ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.
Collapse
Affiliation(s)
- Anne R Kaplan
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| | - Megan R Brady
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| | - Mark W Maciejewski
- Department of Molecular Biology and Biophysics, UConn Health , Farmington, Connecticut 06030-3305, United States
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut , 5232 Villigen-PSI, Switzerland
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269-3125, United States
| |
Collapse
|
19
|
Application of the ATTRACT Coarse-Grained Docking and Atomistic Refinement for Predicting Peptide-Protein Interactions. Methods Mol Biol 2017. [PMID: 28236233 DOI: 10.1007/978-1-4939-6798-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide-protein interactions are abundant in the cell and form an important part of the interactome. Large-scale modeling of peptide-protein complexes requires a fully blind approach; i.e., simultaneously predicting the peptide-binding site and the peptide conformation to high accuracy. Here, we present one of the first fully blind peptide-protein docking protocols, pepATTRACT. It combines a coarse-grained ensemble docking search of the entire protein surface with two stages of atomistic flexible refinement. pepATTRACT yields high-quality predictions for 70 % of the cases when tested on a large benchmark of peptide-protein complexes. This performance in fully blind mode is similar to state-of-the-art local docking approaches that use information on the location of the binding site. Limiting the search to the peptide-binding region, the resulting pepATTRACT-local approach further improves the performance. Docking scripts for pepATTRACT and pepATTRACT-local can be generated via a web interface at www.attract.ph.tum.de/peptide.html . Here, we explain how to set up a docking run with the pepATTRACT web interface and demonstrate its usage by an application on binding of disordered regions from tumor suppressor p53 to a partner protein.
Collapse
|
20
|
van Gunsteren WF, Allison JR, Daura X, Dolenc J, Hansen N, Mark AE, Oostenbrink C, Rusu VH, Smith LJ. Bestimmung von Strukturinformation aus experimentellen Messdaten für Biomoleküle. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wilfred F. van Gunsteren
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Jane R. Allison
- Centre for Theor. Chem. and Phys. & Institute of Natural and Mathematical Sciences; Massey Univ.; Auckland Neuseeland
- Biomolecular Interaction Centre; University of Canterbury, Christchurch; Neuseeland
- Maurice Wilkins Centre for Molecular Biodiscovery; Neuseeland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine; Universitat Autònoma de Barcelona (UAB); 08193 Barcelona Spanien
- Catalan Institution for Research and Advanced Studies (ICREA); 08010 Barcelona Spanien
| | - Jožica Dolenc
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Niels Hansen
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik; Universität Stuttgart; Pfaffenwaldring 9 70569 Stuttgart Deutschland
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences; University of Queensland; St. Lucia QLD 4072 Australien
| | - Chris Oostenbrink
- Institut für Molekulare Modellierung und Simulation; Universität für Bodenkultur Wien; Wien Österreich
| | - Victor H. Rusu
- Laboratorium für Physikalische Chemie; Eidgenössische Technische Hochschule Zürich; 8093 Zürich Schweiz
| | - Lorna J. Smith
- Department of Chemistry; University of Oxford, Inorganic Chemistry Laboratory; South Parks Road Oxford OX1 3QR Großbritannien
| |
Collapse
|
21
|
van Gunsteren WF, Allison JR, Daura X, Dolenc J, Hansen N, Mark AE, Oostenbrink C, Rusu VH, Smith LJ. Deriving Structural Information from Experimentally Measured Data on Biomolecules. Angew Chem Int Ed Engl 2016; 55:15990-16010. [PMID: 27862777 DOI: 10.1002/anie.201601828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/08/2016] [Indexed: 12/27/2022]
Abstract
During the past half century, the number and accuracy of experimental techniques that can deliver values of observables for biomolecular systems have been steadily increasing. The conversion of a measured value Qexp of an observable quantity Q into structural information is, however, a task beset with theoretical and practical problems: 1) insufficient or inaccurate values of Qexp , 2) inaccuracies in the function Q(r→) used to relate the quantity Q to structure r→ , 3) how to account for the averaging inherent in the measurement of Qexp , 4) how to handle the possible multiple-valuedness of the inverse r→(Q) of the function Q(r→) , to mention a few. These apply to a variety of observable quantities Q and measurement techniques such as X-ray and neutron diffraction, small-angle and wide-angle X-ray scattering, free-electron laser imaging, cryo-electron microscopy, nuclear magnetic resonance, electron paramagnetic resonance, infrared and Raman spectroscopy, circular dichroism, Förster resonance energy transfer, atomic force microscopy and ion-mobility mass spectrometry. The process of deriving structural information from measured data is reviewed with an eye to non-experts and newcomers in the field using examples from the literature of the effect of the various choices and approximations involved in the process. A list of choices to be avoided is provided.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Jane R Allison
- Centre for Theor. Chem. and Phys. & Institute of Natural and Mathematical Sciences, Massey Univ., Auckland, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jožica Dolenc
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Victor H Rusu
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Lorna J Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
22
|
Oroz J, Barrera-Vilarmau S, Alfonso C, Rivas G, de Alba E. ASC Pyrin Domain Self-associates and Binds NLRP3 Protein Using Equivalent Binding Interfaces. J Biol Chem 2016; 291:19487-501. [PMID: 27432880 PMCID: PMC5016686 DOI: 10.1074/jbc.m116.741082] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Death domain superfamily members typically act as adaptors mediating in the assembly of supramolecular complexes with critical apoptosis and inflammation functions. These modular proteins consist of death domains, death effector domains, caspase recruitment domains, and pyrin domains (PYD). Despite the high structural similarity among them, only homotypic interactions participate in complex formation, suggesting that subtle factors differentiate each interaction type. It is thus critical to identify these factors as an essential step toward the understanding of the molecular basis of apoptosis and inflammation. The proteins apoptosis-associated speck-like protein containing a CARD (ASC) and NLRP3 play key roles in the regulation of apoptosis and inflammation through self-association and protein-protein interactions mediated by their PYDs. To better understand the molecular basis of their function, we have characterized ASC and NLRP3 PYD self-association and their intermolecular interaction by solution NMR spectroscopy and analytical ultracentrifugation. We found that ASC self-associates and binds NLRP3 PYD through equivalent protein regions, with higher binding affinity for the latter. These regions are located at opposite sides of the protein allowing multimeric complex formation previously shown in ASC PYD fibril assemblies. We show that NLRP3 PYD coexists in solution as a monomer and highly populated large-order oligomerized species. Despite this, we determined its monomeric three-dimensional solution structure by NMR and characterized its binding to ASC PYD. Using our novel structural data, we propose molecular models of ASC·ASC and ASC·NLRP3 PYD early supramolecular complexes, providing new insights into the molecular mechanisms of inflammasome and apoptosis signaling.
Collapse
Affiliation(s)
- Javier Oroz
- From the Centro de Investigaciones Biológicas, Departments of Chemical and Physical Biology and the German Center for Neurodegenerative Diseases (DZNE), ℅Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen-37077, Germany, and
| | - Susana Barrera-Vilarmau
- From the Centro de Investigaciones Biológicas, Departments of Chemical and Physical Biology and
| | | | | | - Eva de Alba
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9 Madrid-28040, Spain, the Health Sciences Research Institute, University of California at Merced, Merced, California 95343
| |
Collapse
|
23
|
The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. J Struct Biol 2016; 194:337-46. [DOI: 10.1016/j.jsb.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/15/2022]
|
24
|
de Vries SJ, Chauvot de Beauchêne I, Schindler CEM, Zacharias M. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. Biophys J 2016; 110:785-97. [PMID: 26846888 DOI: 10.1016/j.bpj.2015.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022] Open
Abstract
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling.
Collapse
Affiliation(s)
- Sjoerd J de Vries
- Physik-Department T38, Technische Universität München, Garching, Germany.
| | | | - Christina E M Schindler
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| |
Collapse
|
25
|
Structure determination of helical filaments by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2016; 113:E272-81. [PMID: 26733681 DOI: 10.1073/pnas.1513119113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers.
Collapse
|
26
|
Kumari G, Serra A, Shin J, Nguyen PQT, Sze SK, Yoon HS, Tam JP. Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from Jasminum sambac. JOURNAL OF NATURAL PRODUCTS 2015; 78:2791-9. [PMID: 26555361 DOI: 10.1021/acs.jnatprod.5b00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27-amino acid jasmintides (jS1 and jS2) were identified at the gene and protein levels. Disulfide bond mapping of jS1 by mass spectrometry and its confirmation by NMR spectroscopy revealed disulfide bond connectivity of C-1-C-5, C-2-C-4, and C-3-C-6, a cystine motif that has not been reported in plant CRPs. Structural determination showed that jS1 displays a well-defined structure framed by three short antiparallel β-sheets. Genomic analysis showed that jasmintides share a three-domain precursor arrangement with a C-terminal mature domain preceded by a long pro-domain of 46 residues and an intron cleavage site between the signal sequence and pro-domain. The compact cysteine-rich structure together with an N-terminal pyroglutamic acid residue confers jasmintides high resistance to heat and enzymatic degradation, including exopeptidase treatment. Collectively, these results reveal a new plant CRP structure with an unusual cystine connectivity, which could be useful as a scaffold for designing peptide drugs.
Collapse
Affiliation(s)
- Geeta Kumari
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Phuong Q T Nguyen
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
27
|
Kini SG, Nguyen PQT, Weissbach S, Mallagaray A, Shin J, Yoon HS, Tam JP. Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis. Biochemistry 2015; 54:6639-49. [DOI: 10.1021/acs.biochem.5b00872] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shruthi G. Kini
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Phuong Q. T. Nguyen
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | - Joon Shin
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Ho Sup Yoon
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - James P. Tam
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
28
|
Szklarczyk OM, Bieler NS, Hünenberger PH, van Gunsteren WF. Flexible Boundaries for Multiresolution Solvation: An Algorithm for Spatial Multiscaling in Molecular Dynamics Simulations. J Chem Theory Comput 2015; 11:5447-63. [PMID: 26574333 DOI: 10.1021/acs.jctc.5b00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An algorithm is proposed for performing molecular dynamics (MD) simulations of a biomolecular solute represented at atomistic resolution surrounded by a surface layer of atomistic fine-grained (FG) solvent molecules within a bulk represented by coarse-grained (CG) solvent beads. The method, called flexible boundaries for multiresolution solvation (FBMS), is based on: (i) a three-region layering of the solvent around the solute, involving an FG layer surrounded by a mixed FG-CG buffer layer, itself surrounded by a bulk CG region; (ii) a definition of the layer boundary that relies on an effective distance to the solute surface and is thus adapted to the shape of the solute as well as adjusts to its conformational changes. The effective surface distance is defined by inverse-nth power averaging over the distances to all non-hydrogen solute atoms, and the layering is enforced by means of half-harmonic distance restraints, attractive for the FG molecules and repulsive for the CG beads. A restraint-free region at intermediate distances enables the formation of the buffer layer, where the FG and CG solvents can mix freely. The algorithm is tested and validated using the GROMOS force field and the associated FG (SPC) and CG (polarizable CGW) water models. The test systems include pure-water systems, where one FG molecule plays the role of a solute, and a deca-alanine peptide with two widely different solute shapes considered, α-helical and fully extended. In particular, as the peptide unfolds, the number of FG molecules required to fill its close-range solvation layer increases, with the additional molecules being provided by the buffer layer. Further validation involves simulations of four proteins in multiresolution FG/CG mixtures. The resulting structural, energetic, and solvation properties are found to be similar to those observed in corresponding pure FG simulations.
Collapse
Affiliation(s)
- Oliwia M Szklarczyk
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| | - Noah S Bieler
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| |
Collapse
|
29
|
Schindler CEM, de Vries SJ, Zacharias M. Fully Blind Peptide-Protein Docking with pepATTRACT. Structure 2015; 23:1507-1515. [PMID: 26146186 DOI: 10.1016/j.str.2015.05.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 02/02/2023]
Abstract
Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. Here, we present a new fully blind flexible peptide-protein docking protocol, pepATTRACT, which combines a rapid coarse-grained global peptide docking search of the entire protein surface with a two-stage atomistic flexible refinement. Global unbound-unbound docking yielded near-native models for 70% of the docking cases when testing the protocol on the largest benchmark of peptide-protein complexes available to date. This performance is similar to that of state-of-the-art local docking protocols that rely on information about the binding site. Upon restricting the search to the peptide binding region, the resulting pepATTRACT-local approach outperformed existing methods. Docking scripts for pepATTRACT and pepATTRACT-local can be generated via a web interface at www.attract.ph.tum.de/peptide.html.
Collapse
Affiliation(s)
- Christina E M Schindler
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Sjoerd J de Vries
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
30
|
Rossi P, Shi L, Liu G, Barbieri CM, Lee HW, Grant TD, Luft JR, Xiao R, Acton TB, Snell EH, Montelione GT, Baker D, Lange OF, Sgourakis NG. A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 2015; 83:309-17. [PMID: 25388768 PMCID: PMC5061451 DOI: 10.1002/prot.24719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023]
Abstract
Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology-based methods, protein-protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet-V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution.
Collapse
Affiliation(s)
- Paolo Rossi
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Lei Shi
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Christopher M. Barbieri
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Hsiau-Wei Lee
- Department of Chemistry, Complex Carbohydrate Research Center, and Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, and Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602
| | - Thomas D. Grant
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Joseph R. Luft
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Rong Xiao
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Thomas B. Acton
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, and Northeast Structural Genomics Consortium, Buffalo, New York 14203
- SUNY Buffalo Department of Structural Biology, Buffalo, New York 14203
| | - Gaetano T. Montelione
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Oliver F. Lange
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Nikolaos G. Sgourakis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Rodrigues JPGLM, Karaca E, Bonvin AMJJ. Information-driven structural modelling of protein-protein interactions. Methods Mol Biol 2015; 1215:399-424. [PMID: 25330973 DOI: 10.1007/978-1-4939-1465-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes.
Collapse
Affiliation(s)
- João P G L M Rodrigues
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | | | | |
Collapse
|
32
|
Tian P, Boomsma W, Wang Y, Otzen DE, Jensen MH, Lindorff-Larsen K. Structure of a Functional Amyloid Protein Subunit Computed Using Sequence Variation. J Am Chem Soc 2014; 137:22-5. [DOI: 10.1021/ja5093634] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengfei Tian
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Wouter Boomsma
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5 DK-2200 Copenhagen N, Denmark
| | - Yong Wang
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5 DK-2200 Copenhagen N, Denmark
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Centre for Insoluble Protein Structures
(inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mogens H. Jensen
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5 DK-2200 Copenhagen N, Denmark
| |
Collapse
|
33
|
Lin YJ, Ikeya T, Kirchner DK, Güntert P. Influence of NMR Data Completeness on Structure Determinations of Homodimeric Proteins. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2014; 22:1263-1273. [PMID: 25126960 DOI: 10.1016/j.str.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
Abstract
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beat Vogeli
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Lange OF. Automatic NOESY assignment in CS-RASREC-Rosetta. JOURNAL OF BIOMOLECULAR NMR 2014; 59:147-159. [PMID: 24831340 DOI: 10.1007/s10858-014-9833-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
We have developed an approach for simultaneous structure calculation and automatic Nuclear Overhauser Effect (NOE) assignment to solve nuclear magnetic resonance (NMR) structures from unassigned NOESY data. The approach, autoNOE-Rosetta, integrates Resolution Adapted Structural RECombination (RASREC) Rosetta NMR calculations with algorithms for automatic NOE assignment. The method was applied to two proteins in the 15-20 kDa size range for which both, NMR and X-ray data, is available. The autoNOE-Rosetta calculations converge for both proteins and yield accurate structures with an RMSD of 1.9 Å to the X-ray reference structures. The method greatly expands the radius of convergence for automatic NOE assignment, and should be broadly useful for NMR structure determination.
Collapse
Affiliation(s)
- Oliver F Lange
- Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany,
| |
Collapse
|
36
|
Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 2013; 502:519-23. [PMID: 24121435 DOI: 10.1038/nature12581] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
Abstract
Post-transcriptional modifications are essential to the cell life cycle, as they affect both pre-ribosomal RNA processing and ribosome assembly. The box C/D ribonucleoprotein enzyme that methylates ribosomal RNA at the 2'-O-ribose uses a multitude of guide RNAs as templates for the recognition of rRNA target sites. Two methylation guide sequences are combined on each guide RNA, the significance of which has remained unclear. Here we use a powerful combination of NMR spectroscopy and small-angle neutron scattering to solve the structure of the 390 kDa archaeal RNP enzyme bound to substrate RNA. We show that the two methylation guide sequences are located in different environments in the complex and that the methylation of physiological substrates targeted by the same guide RNA occurs sequentially. This structure provides a means for differential control of methylation levels at the two sites and at the same time offers an unexpected regulatory mechanism for rRNA folding.
Collapse
MESH Headings
- Apoproteins/chemistry
- Apoproteins/metabolism
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Biocatalysis
- Chromosomal Proteins, Non-Histone/metabolism
- Methylation
- Models, Molecular
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Pyrococcus furiosus/enzymology
- Pyrococcus furiosus/genetics
- RNA Folding
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/metabolism
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Audrone Lapinaite
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Deshmukh L, Schwieters CD, Grishaev A, Ghirlando R, Baber JL, Clore GM. Structure and dynamics of full-length HIV-1 capsid protein in solution. J Am Chem Soc 2013; 135:16133-47. [PMID: 24066695 DOI: 10.1021/ja406246z] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The HIV-1 capsid protein plays a crucial role in viral infectivity, assembling into a cone that encloses the viral RNA. In the mature virion, the N-terminal domain of the capsid protein forms hexameric and pentameric rings, while C-terminal domain homodimers connect adjacent N-terminal domain rings to one another. Structures of disulfide-linked hexamer and pentamer assemblies, as well as structures of the isolated domains, have been solved previously. The dimer configuration in C-terminal domain constructs differs in solution (residues 144-231) and crystal (residues 146-231) structures by ∼30°, and it has been postulated that the former connects the hexamers while the latter links pentamers to hexamers. Here we study the structure and dynamics of full-length capsid protein in solution, comprising a mixture of monomeric and dimeric forms in dynamic equilibrium, using ensemble simulated annealing driven by experimental NMR residual dipolar couplings and X-ray scattering data. The complexity of the system necessitated the development of a novel computational framework that should be generally applicable to many other challenging systems that currently escape structural characterization by standard application of mainstream techniques of structural biology. We show that the orientation of the C-terminal domains in dimeric full-length capsid and isolated C-terminal domain constructs is the same in solution, and we obtain a quantitative description of the conformational space sampled by the N-terminal domain relative to the C-terminal domain on the nano- to millisecond time scale. The positional distribution of the N-terminal domain relative to the C-terminal domain is large and modulated by the oligomerization state of the C-terminal domain. We also show that a model of the hexamer/pentamer assembly can be readily generated with a single configuration of the C-terminal domain dimer, and that capsid assembly likely proceeds via conformational selection of sparsely populated configurations of the N-terminal domain within the capsid protein dimer.
Collapse
Affiliation(s)
- Lalit Deshmukh
- Laboratory of Chemical Physics and ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | | | | | | | | | | |
Collapse
|
38
|
Lin YJ, Kirchner DK, Güntert P. Influence of ¹H chemical shift assignments of the interface residues on structure determinations of homodimeric proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 222:96-104. [PMID: 22858667 DOI: 10.1016/j.jmr.2012.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 06/01/2023]
Abstract
Homodimeric proteins pose a difficulty for NMR structure determination because the degeneracy of the chemical shifts in the two identical monomers implies an ambiguity in all assignments of distance restraints. For homodimeric proteins, residues involved in the interface between two monomers provide essential intermolecular NOEs. The structure determination of homodimeric proteins hence relies strongly on chemical shift assignments of these interface residues. Our paper discusses the influence of the extent of (1)H chemical shift assignments of interface residues on the structure determinations of homodimeric proteins using the CYANA program. The results reveal that successful structure determinations of homodimeric proteins with automated NOE assignment depend on the percentage of assigned interface residues and that a high completeness of around 80-90% of the (1)H chemical shift assignment in the interface is needed for reliable NMR structure determinations of homodimeric proteins for which no experimental distinction between intra- and intermolecular NOEs, e.g. by filtered NOESY experiments, is available. Our results also show that RMSD and target function values are insufficient to judge the quality of homodimeric structures determined using automated NOE assignment. Structure determinations of homodimeric proteins by NMR using conventional NOESY experiments are thus possible but more challenging than for monomeric proteins.
Collapse
Affiliation(s)
- Yi-Jan Lin
- Graduate Institute of Natural Products and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | | | | |
Collapse
|
39
|
Bardiaux B, van Rossum BJ, Nilges M, Oschkinat H. Efficient Modeling of Symmetric Protein Aggregates from NMR Data. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Efficient Modeling of Symmetric Protein Aggregates from NMR Data. Angew Chem Int Ed Engl 2012; 51:6916-9. [DOI: 10.1002/anie.201201783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 11/07/2022]
|
41
|
Jung YS, Cai M, Clore GM. Solution structure of the IIAChitobiose-HPr complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system. J Biol Chem 2012; 287:23819-29. [PMID: 22593574 DOI: 10.1074/jbc.m112.371492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the complex of enzyme IIA of the N,N'-diacetylchitobiose (Chb) transporter with the histidine phosphocarrier protein HPr has been solved by NMR. The IIA(Chb)-HPr complex completes the structure elucidation of representative cytoplasmic complexes for all four sugar branches of the bacterial phosphoryl transfer system (PTS). The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state. IIA(Chb)(H89E) and HPr form a weak complex with a K(D) of ~0.7 mM. The interacting binding surfaces, concave for IIA(Chb) and convex for HPr, complement each other in terms of shape, residue type, and charge distribution, with predominantly hydrophobic residues, interspersed by some uncharged polar residues, located centrally, and polar and charged residues at the periphery. The active site histidine of HPr, His-15, is buried within the active site cleft of IIA(Chb) formed at the interface of two adjacent subunits of the IIA(Chb) trimer, thereby coming into close proximity with the active site residue, H89E, of IIA(Chb). A His89-P-His-15 pentacoordinate phosphoryl transition state can readily be modeled without necessitating any significant conformational changes, thereby facilitating rapid phosphoryl transfer. Comparison of the IIA(Chb)-HPr complex with the IIA(Chb)-IIB(Chb) complex, as well as with other cytoplasmic complexes of the PTS, highlights a unifying mechanism for recognition of structurally diverse partners. This involves generating similar binding surfaces from entirely different underlying structural elements, large interaction surfaces coupled with extensive redundancy, and side chain conformational plasticity to optimize diverse sets of intermolecular interactions.
Collapse
Affiliation(s)
- Young-Sang Jung
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
42
|
The detection and quantitation of protein oligomerization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:19-41. [PMID: 22949109 DOI: 10.1007/978-1-4614-3229-6_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context.
Collapse
|
43
|
Abstract
In solution or solid-state, determining the three-dimensional structure of biomolecules by Nuclear -Magnetic Resonance (NMR) normally requires the collection of distance information. The interpretation of the spectra containing this distance information is a critical step in an NMR structure determination. In this chapter, we present the Ambiguous Restraints for Iterative Assignment (ARIA) program for automated cross-peak assignment and determination of macromolecular structure from solution and solid-state NMR experiments. While the program was initially designed for the assignment of nuclear Overhauser effect (NOE) resonances, it has been extended to the interpretation of magic-angle spinning (MAS) solid-state NMR data. This chapter first details the concepts and procedures carried out by the program. Then, we describe both the general strategy for structure determination with ARIA 2.3 and practical aspects of the technique. ARIA 2.3 includes all recent developments. such as an extended integration of the Collaborative Computing Project for the NMR community (CCPN), the incorporation of the log-harmonic distance restraint potential and an automated treatment of symmetric oligomers.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- NMR-supported Structural Biology, Leibnitz-Institutfür Molekulare Pharmakologie (FMP), Berlin, Germany.
| | | | | |
Collapse
|
44
|
Guerry P, Herrmann T. Comprehensive automation for NMR structure determination of proteins. Methods Mol Biol 2012; 831:429-51. [PMID: 22167686 DOI: 10.1007/978-1-61779-480-3_22] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter gives an overview of automated protein structure determination by nuclear magnetic resonance (NMR) with the UNIO protocol that enables high to full automation of all NMR data analysis steps involved. Four established algorithms, namely, the MATCH algorithm for sequence-specific resonance assignment, the ASCAN algorithm for side-chain resonance assignment, the CANDID algorithm for NOE assignment, and the ATNOS algorithm for signal identification in NMR spectra, are assembled into three principal UNIO NMR data analysis components (MATCH, ATNOS/ASCAN, and ATNOS/CANDID) that are accessed thanks to a particularly intuitive and flexible, yet powerful graphical user interface (GUI). UNIO is designed to work independently or in association with other NMR software. The principal data analysis components for sequence-specific backbone, side-chain and NOE assignment may be run separately or out of sequence. User-intervention at individual stages is encouraged and facilitated by graphical tools included for the preparation, analysis, validation, and subsequent presentation of the NMR structure.
Collapse
Affiliation(s)
- Paul Guerry
- Centre Européen de RMN à très Hauts Champs, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Claude, Villeurbanne, France
| | | |
Collapse
|
45
|
Martin JW, Yan AK, Bailey-Kellogg C, Zhou P, Donald BR. A geometric arrangement algorithm for structure determination of symmetric protein homo-oligomers from NOEs and RDCs. J Comput Biol 2011; 18:1507-23. [PMID: 22035328 DOI: 10.1089/cmb.2011.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a primary tool to perform structural studies of proteins in physiologically-relevant solution conditions. Restraints on distances between pairs of nuclei in the protein, derived from the nuclear Overhauser effect (NOE), provide information about the structure of the protein in its folded state. NMR studies of symmetric protein homo-oligomers present a unique challenge. Using X-filtered NOESY experiments, it is possible to determine whether an NOE restrains a pair of protons across different subunits or within a single subunit, but current experimental techniques are unable to determine in which subunits the restrained protons lie. Consequently, it is difficult to assign NOEs to particular pairs of subunits with certainty, thus hindering the structural analysis of the oligomeric state. Computational approaches are needed to address this subunit ambiguity, but traditional solutions often rely on stochastic search coupled with simulated annealing and simulations of simplified molecular dynamics, which have many tunable parameters that must be chosen carefully and can also fail to report structures consistent with the experimental restraints. In addition, these traditional approaches rarely provide guarantees on running time or solution quality. We reduce the structure determination of homo-oligomers with cyclic symmetry to computing geometric arrangements of unions of annuli in a plane. Our algorithm, disco, runs in expected O(n²) time, where n is the number of distance restraints, potentially assigned ambiguously. disco is guaranteed to report the exact set of oligomer structures consistent with the distance restraints and also with orientational restraints from residual dipolar couplings (RDCs). We demonstrate our method using two symmetric protein complexes: the trimeric E. coli diacylglycerol kinase (DAGK) and a dimeric mutant of the immunoglobulin-binding domain B1 of streptococcal protein G (GB1). In both cases, disco computes oligomer structures with high precision and also finds distance restraints that are either mutually inconsistent or inconsistent with the RDCs. The entire protocol DISCO has been completely automated in a software package that is freely available and open-source at www.cs.duke.edu/donaldlab/software.php.
Collapse
Affiliation(s)
- Jeffrey W Martin
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
46
|
Intrinsic order and disorder in the bcl-2 member harakiri: insights into its proapoptotic activity. PLoS One 2011; 6:e21413. [PMID: 21731739 PMCID: PMC3121775 DOI: 10.1371/journal.pone.0021413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/28/2011] [Indexed: 12/31/2022] Open
Abstract
Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-xL and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual α-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-xL and Bcl-2. The structural data in water indicate that the α-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric α-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works.
Collapse
|
47
|
Martin JW, Yan AK, Bailey-Kellogg C, Zhou P, Donald BR. A graphical method for analyzing distance restraints using residual dipolar couplings for structure determination of symmetric protein homo-oligomers. Protein Sci 2011; 20:970-85. [PMID: 21413097 DOI: 10.1002/pro.620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/09/2022]
Abstract
High-resolution structure determination of homo-oligomeric protein complexes remains a daunting task for NMR spectroscopists. Although isotope-filtered experiments allow separation of intermolecular NOEs from intramolecular NOEs and determination of the structure of each subunit within the oligomeric state, degenerate chemical shifts of equivalent nuclei from different subunits make it difficult to assign intermolecular NOEs to nuclei from specific pairs of subunits with certainty, hindering structural analysis of the oligomeric state. Here, we introduce a graphical method, DISCO, for the analysis of intermolecular distance restraints and structure determination of symmetric homo-oligomers using residual dipolar couplings. Based on knowledge that the symmetry axis of an oligomeric complex must be parallel to an eigenvector of the alignment tensor of residual dipolar couplings, we can represent distance restraints as annuli in a plane encoding the parameters of the symmetry axis. Oligomeric protein structures with the best restraint satisfaction correspond to regions of this plane with the greatest number of overlapping annuli. This graphical analysis yields a technique to characterize the complete set of oligomeric structures satisfying the distance restraints and to quantitatively evaluate the contribution of each distance restraint. We demonstrate our method for the trimeric E. coli diacylglycerol kinase, addressing the challenges in obtaining subunit assignments for distance restraints. We also demonstrate our method on a dimeric mutant of the immunoglobulin-binding domain B1 of streptococcal protein G to show the resilience of our method to ambiguous atom assignments. In both studies, DISCO computed oligomer structures with high accuracy despite using ambiguously assigned distance restraints.
Collapse
Affiliation(s)
- Jeffrey W Martin
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Around half of all protein structures solved nowadays using solution-state nuclear magnetic resonance (NMR) spectroscopy have been because of automated data analysis. The pervasiveness of computational approaches in general hides, however, a more nuanced view in which the full variety and richness of the field appears. This review is structured around a comparison of methods associated with three NMR observables: classical nuclear Overhauser effect (NOE) constraint gathering in contrast with more recent chemical shift and residual dipole coupling (RDC) based protocols. In each case, the emphasis is placed on the latest research, covering mainly the past 5 years. By describing both general concepts and representative programs, the objective is to map out a field in which--through the very profusion of approaches--it is all too easy to lose one's bearings.
Collapse
|
49
|
Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH. Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 2011; 132:13765-75. [PMID: 20828131 DOI: 10.1021/ja104213j] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed β-solenoid, and an atomic-resolution NMR structure of the triangular core was determined from unambiguous restraints only. In this paper, we go considerably further and present a comprehensive protocol using six differently labeled samples, a collection of optimized solid-state NMR experiments, and adapted structure calculation protocols. The high-resolution structure obtained includes the less ordered but biologically important C-terminal part and improves the overall accuracy by including a large number of ambiguous distance restraints.
Collapse
Affiliation(s)
- Hélène Van Melckebeke
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Modeling pilus structures from sparse data. J Struct Biol 2010; 173:436-44. [PMID: 21115127 DOI: 10.1016/j.jsb.2010.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022]
Abstract
Bacterial Type II secretion systems (T2SS) and type IV pili (T4P) biogenesis machineries share the ability to assemble thin filaments from pilin protein subunits in the plasma membrane. Here we describe in detail the calculation strategy that served to determine a detailed atomic model of the T2SS pilus from Klebsiella oxytoca (Campos et al., PNAS 2010). The strategy is based on molecular modeling with generalized distance restraints and experimental validation (salt bridge charge inversion; double cysteine substitution and crosslinking). It does not require directly fitting structures into an envelope obtained from electron microscopy, but relies on lower resolution information, in particular the symmetry parameters of the helix forming the pilus. We validate the strategy with T4P where either a higher resolution structure is available (for the gonococcal (GC) pilus from Neisseria gonorrhoeae), or where we can compare our results to additional experimental data (for Vibrio cholerae TCP). The models are of sufficient precision to compare the architecture of the different pili in detail.
Collapse
|