1
|
Koch O, Cole J, Block P, Klebe G. Secbase: database module to retrieve secondary structure elements with ligand binding motifs. J Chem Inf Model 2009; 49:2388-402. [PMID: 19807134 DOI: 10.1021/ci900202d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.
Collapse
Affiliation(s)
- Oliver Koch
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
2
|
Stability and Design of α-Helical Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:1-52. [DOI: 10.1016/s0079-6603(08)00601-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Free Energy Calculations: Use and Limitations in Predicting Ligand Binding Affinities. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125939.ch4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
4
|
|
5
|
Kennedy RJ, Walker SM, Kemp DS. Energetic characterization of short helical polyalanine peptides in water: analysis of 13C=O chemical shift data. J Am Chem Soc 2005; 127:16961-8. [PMID: 16316242 PMCID: PMC1560102 DOI: 10.1021/ja054645g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measured at 2 degrees C in water, NMR chemical shifts of (13)C=O labeled central alanine residues of peptides W-Lys(5)-(t)L(3)-Ala(n)-(t)L(3)-Lys(5)NH(2), n = 9, 11, 13, 15, 19 and W-Lys(5)-(t)L(3)-a-Ala(n)-A-Inp-(t)L(2)-Lys(5)NH(2) (a = D-Ala; (t)L = tert-leucine; Inp = 4-carboxypiperidine) are used to assign jt(L) and ct(L), the N- and C-terminal (t)L capping parameters and length-dependent values for w(Ala)(n), the alanine helical propensity for Ala(n) peptides. These parameters allow Lifson-Roig characterization of the stabilities of Ala(n)() helices in water. To facilitate chemical shift characterization, different (13)C/(12)C ratios are incorporated into specific Ala sites to code up to six residue sites per peptide. Large left/right chemical shift anisotropies are intrinsic to helical polyalanines, and a correcting L-R-based model is introduced. Capping parameters jt(L) = ct(L) lie in the range of 0.3 to 0.5; the (t)L residues are thus moderately helix-destabilizing. For helical conformations of lengths shorter than eight residues, assigned values for w(Ala) approach 1.0 but increase monotonically with length to a value of 1.59 for w(Ala)(19).
Collapse
Affiliation(s)
- Robert J Kennedy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | |
Collapse
|
6
|
Heitmann B, Job GE, Kennedy RJ, Walker SM, Kemp DS. Water-solubilized, cap-stabilized, helical polyalanines: calibration standards for NMR and CD analyses. J Am Chem Soc 2005; 127:1690-704. [PMID: 15701003 PMCID: PMC1941670 DOI: 10.1021/ja0457462] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer (beta)Asp-Hel and C-capped by beta-aminoalanine beta and that are studied in water at 2 degrees C, pH 1-8. NMR analysis yields a structural characterization of the peptide Ac(beta)AspHelAla(8)betaNH(2) and selected members of one (beta)AspHelAla(n)beta series. At pH > 4.5 the (beta)AspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal beta-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly (13)C- and (15)N-labeled Ala(8) and Ala(12) peptides define Ala(n) hydrogen bonding signatures as alpha-helical without detectable 3(10) character. Relative NH-->ND exchange rates yield site protection factors PF(i) that define uniquely high fractional helicities FH for the peptide Ala(n) regions. These Ala(n) calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first (13)C NMR chemical shifts, (3)J(HNH)(alpha) coupling constants, and CD ellipticities [theta(Molar)](lambda,n) characteristic of a fully helical alanine within an Ala(n) context. CD data are used to assign parameters X and [theta](lambda,infinity), required for rigorous calculation of FH values from CD ellipticities.
Collapse
Affiliation(s)
- Björn Heitmann
- Contribution from the Department of Chemistry, Room 18-296, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gabriel E. Job
- Contribution from the Department of Chemistry, Room 18-296, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert J. Kennedy
- Contribution from the Department of Chemistry, Room 18-296, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Sharon M. Walker
- Contribution from the Department of Chemistry, Room 18-296, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Daniel S. Kemp
- Contribution from the Department of Chemistry, Room 18-296, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
7
|
Kwok SC, Hodges RS. Effect of chain length on coiled-coil stability: Decreasing stability with increasing chain length. Biopolymers 2004; 76:378-90. [PMID: 15372485 DOI: 10.1002/bip.20141] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The de novo design and biophysical characterization of three series of two-stranded alpha-helical coiled coils with different chain lengths are described. Our goal was to examine how increasing chain length would affect protein folding and stability when one or more heptad repeat(s) of K-A-E-A-L-E-G (gabcdef) was inserted into the central region of different coiled-coil host proteins. This heptad was designed to maintain the continuous 3-4 hydrophobic repeat of the coiled-coil host and introduce an Ala and Leu residue in the hydrophobic core at the a and d position, respectively, and a pair of stabilizing interchain ionic i to i' + 5 (g to e') interactions per heptad inserted. The secondary structures of the three series of disulfide-bridged polypeptides were studied by CD spectroscopy and their stabilities determined by chemical and thermal denaturation. The results showed that successive insertions of this heptad systematically decreased the stability of all the coiled coils studied regardless of the overall initial stability of the host coiled coil. These observations are in contrast to the generally accepted implication that the folding and stability of coiled coils are enhanced with increasing chain length. Our results imply that, in these examples where an Ala and Leu hydrophobic residue were introduced into the coiled-coil core per inserted heptad, there was still insufficient stability to overcome unfavorable entropy associated with chain length extension, even though the inserted heptad contained the most stabilizing hydrophobic residue (Leu) at position d and stabilizing ionic attractions.
Collapse
Affiliation(s)
- Stanley C Kwok
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
8
|
Dima RI, Thirumalai D. Probing the instabilities in the dynamics of helical fragments from mouse PrPC. Proc Natl Acad Sci U S A 2004; 101:15335-40. [PMID: 15494440 PMCID: PMC524442 DOI: 10.1073/pnas.0404235101] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first step in the formation of the protease resistant form (PrPSc) of prion proteins involves a conformational transition of the monomeric cellular form of PrPC to a more stable aggregation prone state PrPC*. A search of PDBselect and Escherichia coli and yeast genomes shows that the exact pattern of charges in helix 1 (H1) is rare. Among the 23 fragments in PDBselect with the pattern of charges that match H1, 83% are helical. Mapping of the rarely found (in E. coli and yeast genomes) hydrophobicity patterns in helix 2 (H2) to known secondary structures suggests that the PrPC-->PrPC* transition must be accompanied by alterations in conformations in second half of H2. We probe the dynamical instability in H1 and in the combined fragments of H2 and helix 3 (H3) from mPrPC (H2+H3), with intact disulfide bond, using all atom molecular dynamics (MD) simulations totaling 680 ns. In accord with recent experiments, we found that H1 is helical, whereas the double mutant H1[D147A-R151A] is less stable, implying that H1 is stabilized by the (i,i + 4) charged residues. The stability of H1 suggests that it is unlikely to be involved in the PrPC-->PrPC* transition. MD simulations of H2+H3 shows that the second half of H2 (residues 184-194) and parts of H3 (residues 200-204 and 215-223) undergo a transition from alpha-helical conformation to a beta and/or random coil state. Simulations using two force fields (optimized potentials for liquid simulations and CHARMM) give qualitatively similar results. We use the MD results to propose tentative structures for the PrPC* state.
Collapse
Affiliation(s)
- Ruxandra I Dima
- Biosciences Program, Institute for Physical Science and Technology, and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
9
|
Kwok SC, Hodges RS. Stabilizing and Destabilizing Clusters in the Hydrophobic Core of Long Two-stranded α-Helical Coiled-coils. J Biol Chem 2004; 279:21576-88. [PMID: 15020585 DOI: 10.1074/jbc.m401074200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detailed sequence analyses of the hydrophobic core residues of two long two-stranded alpha-helical coiled-coils that differ dramatically in sequence, function, and length were performed (tropomyosin of 284 residues and the coiled-coil domain of the myosin rod of 1086 residues). Three types of regions were present in the hydrophobic core of both proteins: stabilizing clusters and destabilizing clusters, defined as three or more consecutive core residues of either stabilizing (Leu, Ile, Val, Met, Phe, and Tyr) or destabilizing (Gly, Ala, Cys, Ser, Thr, Asn, Gln, Asp, Glu, His, Arg, Lys, and Trp) residues, and intervening regions that consist of both stabilizing and destabilizing residues in the hydrophobic core but no clusters. Subsequently, we designed a series of two-stranded coiled-coils to determine what defines a destabilizing cluster and varied the length of the destabilizing cluster from 3 to 7 residues to determine the length effect of the destabilizing cluster on protein stability. The results showed a dramatic destabilization, caused by a single Leu to Ala substitution, on formation of a 3-residue destabilizing cluster (DeltaT(m) of 17-21 degrees C) regardless of the stability of the coiled-coil. Any further substitution of Leu to Ala that increased the size of the destabilizing cluster to 5 or 7 hydrophobic core residues in length had little effect on stability (DeltaT(m) of 1.4-2.8 degrees C). These results suggested that the contribution of Leu to protein stability is context-dependent on whether the hydrophobe is in a stabilizing cluster or its proximity to neighboring destabilizing and stabilizing clusters.
Collapse
Affiliation(s)
- Stanley C Kwok
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
10
|
Liu Z, Jiang L, Gao Y, Liang S, Chen H, Han Y, Lai L. Beyond the rotamer library: genetic algorithm combined with the disturbing mutation process for upbuilding protein side-chains. Proteins 2003; 50:49-62. [PMID: 12471599 DOI: 10.1002/prot.10253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The disturbing genetic algorithm, incorporating the disturbing mutation process into the genetic algorithm flow, has been developed to extend the searching space of side-chain conformations and to improve the quality of the rotamer library. Moreover, the growing generation amount idea, simulating the real situation of the natural evolution, is introduced to improve the searching speed. In the calculations using the pseudo energy scoring function of the root mean squared deviation, the disturbing genetic algorithm method has been shown to be highly efficient. With the real energy function based on AMBER force field, the program has been applied to rebuilding side-chain conformations of 25 high-quality crystallographic structures of single-protein and protein-protein complexes. The averaged root mean standard deviation of atom coordinates in side-chains and veracities of the torsion angles of chi(1) and chi(1) + chi(2) are 1.165 A, 88.2 and 72.9% for the buried residues, respectively, and 1.493 A, 79.2 and 64.7% for all residues, showing that the method has equal precision to the program SCWRL, whereas it performs better in the prediction of buried residues and protein-protein interfaces. This method has been successfully used in redesigning the interface of the Basnase-Barstar complex, indicating that it will have extensive application in protein design, protein sequence and structure relationship studies, and research on protein-protein interaction.
Collapse
Affiliation(s)
- Zhijie Liu
- State key Laboratory for Structural Chemistry of Stable and Unstable Species, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Miller JS, Kennedy RJ, Kemp DS. Solubilized, spaced polyalanines: a context-free system for determining amino acid alpha-helix propensities. J Am Chem Soc 2002; 124:945-62. [PMID: 11829602 DOI: 10.1021/ja011726d] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The logical design principles behind a system of properly water-solubilized, spaced polyalanines are presented. Peptides conforming to these design principles are shown to be unaggregated, and their helical properties as measured by the circular dichroism (CD) residue ellipticity at 222 nm, [theta](222), are shown to be dependent upon the lengths of their alanine regions. It is further demonstrated that CD contributions of the alanine cores are independent of the CD contributions attributable to other features of the peptides. The CD response of these polyalanines to variations in temperature and salt or denaturant concentration is described. CD data for a series of peptides with Ala(n) cores varying in length from 12 to 45 residues are presented that allow calculation of the helical propensity, w(Ala), in a purely alanine context. Mathematical modeling of these unprecedented data reveals the insufficiency of currently accepted literature helicity modeling parameters. A modification to the standard Lifson-Roig algorithm is introduced based on hydrogen-bonding cooperativity.
Collapse
Affiliation(s)
- Justin S Miller
- Department of Chemistry, Room 18-582, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
12
|
Iovino M, Falconi M, Petruzzelli R, Desideri A. Role of the helix capping in the stability of the mouse prion (180-213) segment: investigation through molecular dynamics simulations. J Biomol Struct Dyn 2001; 19:237-46. [PMID: 11697729 DOI: 10.1080/07391102.2001.10506735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Molecular dynamics simulation of the 180-213 segment, forming the B and C helices in the mouse prion protein, and of three mutants, where the capping box residues or the hydrophobic staple motif residues were selectively mutated, have been carried out. The results indicate that the wild type segment is stable over all the trajectory, whilst the mutants display different degrees of destabilization. In detail mutation of Asp202 brings to a rapid unfolding of helix C likely because of the concomitant loss of a hydrogen bond and of a negative charge able to stabilize the dipole in the first turn of the helix. A lower destabilizing effect is observed upon mutation Thr199. On the other hand mutation of Phe198 and Val203, the hydrophobic staple residues, brings to an incorrect orientation of the first helix relative to the second one due to a weakening of the hydrophobic interaction. The results confirm the importance of the presence of both motifs for the structural integrity of the isolated fragment and suggest that these residues may have a main role in the structural transition observed in the inherited human prion diseases.
Collapse
Affiliation(s)
- M Iovino
- Istituto Nazionale di Fisica della Materia (INFM), Università degli Studi di Roma Tor Vergata, Roma, Italy
| | | | | | | |
Collapse
|
13
|
Kwok SC, Tripet B, Man JH, Chana MS, Lavigne P, Mant CT, Hodges RS. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability. Biopolymers 2000; 47:101-23. [PMID: 9692331 DOI: 10.1002/(sici)1097-0282(1998)47:1<101::aid-bip11>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The solution to the protein folding problem lies in defining the relative energetic contributions of short-range and long-range interactions. In other words, the tendency of a stretch of amino acids to adopt a final secondary structural fold is context dependent. Our approach to this problem is to address whether an amino acid sequence, a "cassette," with a defined secondary structure in the three-dimensional structure of a native protein, can adopt a different conformation when placed into a different protein environment. Thus, we designed de novo a disulfide-bridged two-stranded alpha-helical parallel coiled coil, where each polypeptide chain consisted of 39 residues, as a "cassette holder." The 11-residue cassette would be inserted into the center of each polypeptide chain between the two nucleating alpha-helices to replace the control sequence. This Structural Cassette Mutagenesis model permits the analysis of short-range interactions within the inserted cassette as well as long-range interactions between the nucleating helices and the cassette region. The cassette holder, with a control sequence as the cassette, had a GdnHCl transition midpoint during denaturation of 5.6M. To demonstrate the feasibility of our model, an 11-residue beta-strand cassette from an immunoglobulin fold was inserted. The cassette was fully induced into the alpha-helical conformation with a [GdnHCl]1/2 value of 3.2M. To demonstrate the importance of short-range interactions (beta-sheet/alpha-helical propensities of amino acid side chains) in modulating structure and stability, a series of 1-5 threonine residues (highest beta-sheet propensity) were substituted into the solvent-exposed portions of the cassette in the alpha-helical conformation. Each successive substitution systematically decreased the stability of the coiled coil with peptide T4b (4 Thr residues) having a [GdnHCl]1/2 value of 2.2M. The single substitution of Ile in the hydrophobic core of the cassette with Ala or Thr had the most dramatic effect on protein stability (peptide 120T, [GdnHCl]1/2 value of 1.4M). Though these substitutions were able to modulate stability, they were not able to disrupt the alpha-helical conformation of the cassette, showing the importance of the nucleating alpha-helices on either side of the cassette in controlling conformation of the cassette. We have demonstrated the feasibility of our model protein to accept a beta-strand cassette. The effect of cassettes containing other beta-strands, beta-turns, loops, regions of undefined structure, and helical segments on conformation and stability of our model protein will also be determined.
Collapse
Affiliation(s)
- S C Kwok
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Hendsch ZS, Tidor B. Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Protein Sci 1999; 8:1381-92. [PMID: 10422826 PMCID: PMC2144375 DOI: 10.1110/ps.8.7.1381] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The GCN4 leucine zipper is a peptide homodimer that has been the subject of a number of experimental and theoretical investigations into the determinants of affinity and specificity. Here, we utilize this model system to investigate electrostatic effects in protein binding using continuum calculations. A particularly novel feature of the computations made here is that they provide an interaction-by-interaction breakdown of the electrostatic contributions to the free energy of docking that includes changes in the interaction of each functional group with solvent and changes in interactions between all pairs of functional groups on binding. The results show that (1) electrostatic effects disfavor binding by roughly 15 kcal/mol due to desolvation effects that are incompletely compensated in the bound state, (2) while no groups strongly stabilize binding, the groups that are most destabilizing are charged and polar side chains at the interface that have been implicated in determining binding specificity, and (3) attractive intramolecular interactions (e.g., backbone hydrogen bonds) that are enhanced on binding due to reduced solvent screening in the bound state contribute significantly to affinity and are likely to be a general effect in other complexes. A comparison is made between the results obtained in an electrostatic analysis carried out calculationally and simulated results corresponding to idealized data from a scanning mutagenesis experiment. It is shown that scanning experiments provide incomplete information on interactions and, if overinterpreted, tend to overestimate the energetic effect of individual side chains that make attractive interactions. Finally, a comparison is made between the results available from a continuum electrostatic model and from a simpler surface-area dependent solvation model. In this case, although the simpler model neglects certain interactions, on average it performs rather well.
Collapse
Affiliation(s)
- Z S Hendsch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | |
Collapse
|
15
|
Abstract
The first three residues at the N terminus of the alpha-helix are called N1, N2 and N3. We surveyed 2102 alpha-helix N termini in 298 high-resolution, non-homologous protein crystal structures for N1, N2 and N3 amino acid and side-chain rotamer propensities and hydrogen-bonding patterns. We find strong structural preferences that are unique to these sites. The rotamer distributions as a function of amino acid identity and position in the helix are often explained in terms of hydrogen-bonding interactions to the free N1, N2 and N3 backbone NH groups. Notably, the "good N2" amino acid residues Gln, Glu, Asp, Asn, Ser, Thr and His preferentially form i, i or i,i+1 hydrogen bonds to the backbone, though this is hindered by good N-caps (Asp, Asn, Ser, Thr and Cys) that compete for these hydrogen bond donors. We find a number of specific side-chain to side-chain interactions between N1 and N2 or between the N-cap and N2 or N3, such as Arg(N-cap) to Asp(N2). The strong energetic and structural preferences found for N1, N2 and N3, which differ greatly from positions within helix interiors, suggest that these sites should be treated explicitly in any consideration of helical structure in peptides or proteins.
Collapse
Affiliation(s)
- S Penel
- Department of Biomolecular Sciences, UMIST, Manchester, M60 1QD, UK
| | | | | |
Collapse
|
16
|
Abstract
The role of phosphorylation in stabilizing the N-termini of alpha-helices is examined using computer simulations of model peptides. The models comprise either a phosphorylated or unphosphorylated serine at the helix N-terminus, followed by nine alanines. Monte Carlo/stochastic Dynamics simulations were performed on the model helices. The simulations revealed a distinct stabilization of the helical conformation at the N-terminus after phosphorylation. The stabilization was attributable to favorable electrostatic interactions between the phosphate and the helix backbone. However, direct helix capping by the phosphorylated sidechain was not observed. The results of the calculations are consistent with experimental evidence on the stabilization of helices by phosphates and other anions.
Collapse
Affiliation(s)
- J L Smart
- Molecular Simulations, Inc., San Diego, CA 92121, USA
| | | |
Collapse
|
17
|
|
18
|
Abstract
Theoretical calculations (Hendsch ZS & Tidor B, 1994, Protein Sci 3:211-226) and experiments (Waldburger CD et al., 1995, Nat Struct Biol 2:122-128; Wimley WC et al., 1996, Proc Natl Acad Sci USA 93:2985-2990) suggest that hydrophobic interactions are more stabilizing than salt bridges in protein folding. The lack of apparent stability benefit for many salt bridges requires an alternative explanation for their occurrence within proteins. To examine the effect of salt bridges on protein structure and stability in more detail, we have developed an energy function for simple cubic lattice polymers based on continuum electrostatic calculations of a representative selection of salt bridges found in known protein crystal structures. There are only three types of residues in the model, with charges of -1, 0, or + 1. We have exhaustively enumerated conformational space and significant regions of sequence space for three-dimensional cubic lattice polymers of length 16. The results demonstrate that, while the more highly charged sequences are less stable, the loss of stability is accompanied by a substantial reduction in the degeneracy of the lowest-energy state. Moreover, the reduction in degeneracy is greater due to charges that pair than for lone charges that remain relatively exposed to solvent. We have also explored and illustrated the use of ion-pairing strategies for rational structural design using model lattice studies.
Collapse
Affiliation(s)
- C V Sindelar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | |
Collapse
|
19
|
Ohlendorf DH, Tronrud DE, Matthews BW. Refined structure of Cro repressor protein from bacteriophage lambda suggests both flexibility and plasticity. J Mol Biol 1998; 280:129-36. [PMID: 9653036 DOI: 10.1006/jmbi.1998.1849] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the Cro repressor protein from phage lambda has been refined to a crystallographic R-value of 19.3% at 2.3 A resolution. The re fined model supports the structure as originally described in 1981 and provides a basis for comparison with the Cro-operator complex described in the accompanying paper. Changes in structure seen in different crystal forms and modifications of Cro suggest that the individual subunits are somewhat plastic in nature. In addition, the dimer of Cro suggests a high degree of flexibility, which may be important in forming the Cro-DNA complex. The structure of the Cro subunit as determined by NMR agrees reasonably well with that in the crystals (root-mean-square discrepancy of about 2 A for all atoms). There are, however, only a limited number of intersubunit distance constraints and, presumably for this reason, the different NMR models for the dimer vary substantially among themselves (discrepancies of 1.3 to 5.5 A). Because of this variation it is not possible to say whether the range of discrepancies between the X-ray and NMR Cro dimers (2.9 to 7.5 A) represent a significant difference between the X-ray and solution structures. It has previously been proposed that substitutions of Tyr26 in Cro increase thermal stability by the "reverse hydrophobic effect", i.e. by exposing 40% more hydrophobic surface to solvent in the folded form than in the unfolded state. The refined structure, however, suggests that Tyr26 is equally solvent exposed in the folded and unfolded states. The most stabilizing substitution is Tyr26-->Asp and in this case it appears that interaction with an alpha-helix dipole is at least partly responsible for the enhanced stability.
Collapse
Affiliation(s)
- D H Ohlendorf
- Institute of Molecular Biology Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, OR, 97403-1229, USA
| | | | | |
Collapse
|
20
|
Abstract
Helix-capping motifs are specific patterns of hydrogen bonding and hydrophobic interactions found at or near the ends of helices in both proteins and peptides. In an alpha-helix, the first four >N-H groups and last four >C=O groups necessarily lack intrahelical hydrogen bonds. Instead, such groups are often capped by alternative hydrogen bond partners. This review enlarges our earlier hypothesis (Presta LG, Rose GD. 1988. Helix signals in proteins. Science 240:1632-1641) to include hydrophobic capping. A hydrophobic interaction that straddles the helix terminus is always associated with hydrogen-bonded capping. From a global survey among proteins of known structure, seven distinct capping motifs are identified-three at the helix N-terminus and four at the C-terminus. The consensus sequence patterns of these seven motifs, together with results from simple molecular modeling, are used to formulate useful rules of thumb for helix termination. Finally, we examine the role of helix capping as a bridge linking the conformation of secondary structure to supersecondary structure.
Collapse
Affiliation(s)
- R Aurora
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- B Tidor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
22
|
Kohn WD, Kay CM, Hodges RS. Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded α-helical coiled-coils. J Pept Sci 1997. [DOI: 10.1002/(sici)1099-1387(199705)3:3<209::aid-psc102>3.0.co;2-s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Kohn WD, Kay CM, Hodges RS. Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded alpha-helical coiled-coils. J Pept Sci 1997; 3:209-23. [PMID: 9230486 DOI: 10.1002/(sici)1099-1387(199705)3:3%3c209::aid-psc102%3e3.0.co;2-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects on protein stability of negatively charged Glu side chains at different positions along the length of the alpha-helix were investigated in the two-stranded alpha-helical coiled-coil. A native coiled-coil has been designed which consists of two identical 35 residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow the formation of an interchain 2-2' disulphide bridge. This coiled-coil contains no intra- or interchain electrostatic interactions and served as a control for peptides in which Glu was substituted for Gln in the e or g heptad positions. The effect of the substitutions on stability was determined by urea denaturation at 20 degrees C with the degree of unfolding monitored by circular dichroism spectroscopy. A Glu substituted for Gln near the N-terminus in each chain of the coiled-coil stabilizes the coiled-coil at pH 7, consistent with the charge-helix dipole interaction model. This stability increase is modulated by pH change and the addition of salt (KCl or guanidine hydrochloride), confirming the electrostatic nature of the effect. In contrast, Glu substitution in the middle of the helix destabilizes the coiled-coil because of the lower helical propensity and hydrophobicity of Glu compared with Gln at pH7. Taking the intrinsic differences into account, the apparent charge-helix dipole interaction at the N-terminus is approximately 0.35 kcal/mol per Glu substitution. A Glu substitution at the C-terminus destabilizes the coiled-coil more than in the middle owing to the combined effects of intrinsic destabilization and unfavourable charge-helix dipole interaction with the negative pole of the helix dipole. The estimated destabilizing charge-helix dipole interaction of 0.08 kcal/mol is smaller than the stabilizing interaction at the N-terminus. The presence of a 2-2'disulphide bridge appears to have little influence on the magnitude of the charge-helix dipole interactions at either end of the coiled-coil.
Collapse
Affiliation(s)
- W D Kohn
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
24
|
Daniel RM, Dines M, Petach HH. The denaturation and degradation of stable enzymes at high temperatures. Biochem J 1996; 317 ( Pt 1):1-11. [PMID: 8694749 PMCID: PMC1217448 DOI: 10.1042/bj3170001] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Now that enzymes are available that are stable above 100 degrees C it is possible to investigate conformational stability at this temperature, and also the effect of high-temperature degradative reactions in functioning enzymes and the inter-relationship between degradation and denaturation. The conformational stability of proteins depends upon stabilizing forces arising from a large number of weak interactions, which are opposed by an almost equally large destabilizing force due mostly to conformational entropy. The difference between these, the net free energy of stabilization, is relatively small, equivalent to a few interactions. The enhanced stability of very stable proteins can be achieved by an additional stabilizing force which is again equivalent to only a few stabilizing interactions. There is currently no strong evidence that any particular interaction (e.g. hydrogen bonds, hydrophobic interactions) plays a more important role in proteins that are stable at 100 degrees C than in those stable at 50 degrees C, or that the structures of very stable proteins are systematically different from those of less stable proteins. The major degradative mechanisms are deamidation of asparagine and glutamine, and succinamide formation at aspartate and glutamate leading to peptide bond hydrolysis. In addition to being temperature-dependent, these reactions are strongly dependent upon the conformational freedom of the susceptible amino acid residues. Evidence is accumulating which suggests that even at 100 degrees C deamidation and succinamide formation proceed slowly or not at all in conformationally intact (native) enzymes. Whether this is the case at higher temperatures is not yet clear, so it is not known whether denaturation of degradation will set the upper limit of stability for enzymes.
Collapse
Affiliation(s)
- R M Daniel
- Department of Biological Sciences, University of Walkato, Hamilton, New Zealand
| | | | | |
Collapse
|
25
|
Abstract
We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides.
Collapse
Affiliation(s)
- A J Doig
- Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, United Kingdom
| | | |
Collapse
|