1
|
Ramakrishnan C, Joshi V, Joseph JM, Vishwanath BS, Velmurugan D. Identification of Novel Inhibitors ofDaboia russelliPhospholipase A2Using the Combined Pharmacophore Modeling Approach. Chem Biol Drug Des 2014; 84:379-92. [DOI: 10.1111/cbdd.12332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Vikram Joshi
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Joseph Mavelithuruthel Joseph
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Bannikuppe S. Vishwanath
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| |
Collapse
|
2
|
Ishida T. [Overview of structural study on conformations and intermolecular interactions of biomolecules]. YAKUGAKU ZASSHI 2012; 132:785-816. [PMID: 22790026 DOI: 10.1248/yakushi.132.785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Information on the conformational feature and specific intermolecular interaction of biomolecules is important to understand the biological function and to develop device for treating disorder caused by the abnormal function. Thus the 3D structures of the biologically active molecules and the specific interactions with their target molecules at the atomic level have been investigated by various physicochemical approaches. Herein, the following five subjects are reviewed: (1) function-linked conformations of biomolecules including natural annular products, opioid peptides and neuropeptides; (2) π-π stacking interactions of tryptophan derivatives with coenzymes and nucleic acid bases; (3) mRNA cap recognition of eukaryotic initiation factor 4E and its regulation by 4E-binding protein; (4) conformational feature of histamine H2 receptor antagonists and design of cathepsin B inhibitors; (5) self-aggregation mechanism of tau protein and its inhibition.
Collapse
Affiliation(s)
- Toshimasa Ishida
- Laboratory of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| |
Collapse
|
3
|
Perumal Samy R, Gopalakrishnakone P, Chow VTK. Therapeutic application of natural inhibitors against snake venom phospholipase A(2). Bioinformation 2012; 8:48-57. [PMID: 22359435 PMCID: PMC3282276 DOI: 10.6026/97320630008048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 02/07/2023] Open
Abstract
Natural inhibitors occupy an important place in the potential to neutralize the toxic effects caused by snake venom proteins and enzymes. It has been well recognized for several years that animal sera, some of the plant and marine extracts are the most potent in neutralizing snake venom phospholipase A(2) (svPLA(2)). The implication of this review to update the latest research work which has been accomplished with svPLA(2) inhibitors from various natural sources like animal, marine organisms presents a compilation of research in this field over the past decade and revisiting the previous research report including those found in plants. In addition to that the bioactive compounds/inhibitor molecules from diverse sources like aristolochic alkaloid, flavonoids and neoflavonoids from plants, hydrocarbones -2, 4 dimethyl hexane, 2 methylnonane, and 2, 6 dimethyl heptane obtained from traditional medicinal plants Tragia involucrata (Euphorbiaceae) member of natural products involved for the inhibitory potential of phospholipase A(2) (PLA(2)) enzymes in vitro and also decrease both oedema induced by snake venom as well as human synovial fluid PLA(2). Besides marine natural products that inhibit PLA(2) are manoalide and its derivatives such as scalaradial and related compounds, pseudopterosins and vidalols, tetracylne from synthetic chemicals etc. There is an overview of the role of PLA(2) in inflammation that provides a rationale for seeking inhibitors of PLA(2) as anti-inflammatory agents. However, more studies should be considered to evaluate antivenom efficiency of sera and other agents against a variety of snake venoms found in various parts of the world. The implications of these new groups of svPLA(2) toxin inhibitors in the context of our current understanding of snake biology as well as in the development of new novel antivenoms therapeutics agents in the efficient treatment of snake envenomations are discussed.
Collapse
Affiliation(s)
- Ramar Perumal Samy
- Infectious Disease Programme, Department of Microbiology
- Venom and Toxin Research Programme, Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Ponnampalam Gopalakrishnakone
- Venom and Toxin Research Programme, Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | |
Collapse
|
4
|
Thwin M, Samy RP, Satyanarayanajois SD, Gopalakrishnakone P. Venom neutralization by purified bioactive molecules: Synthetic peptide derivatives of the endogenous PLA2 inhibitory protein PIP (a mini-review). Toxicon 2010; 56:1275-83. [DOI: 10.1016/j.toxicon.2009.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 01/06/2023]
|
5
|
Ramakrishnan C, Subramanian V, Velmurugan D. Molecular Dynamics Study of Secretory Phospholipase A2 of Russell’s Viper and Bovine Pancreatic Sources. J Phys Chem B 2010; 114:13463-72. [DOI: 10.1021/jp102073f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| | - V. Subramanian
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| | - D. Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| |
Collapse
|
6
|
Ompraba G, Velmurugan D, Louis PA, Rafi ZA. Molecular Modeling of the Additional Inhibitor Site Located in Secretory Phospholipase A2. J Biomol Struct Dyn 2010; 27:489-500. [DOI: 10.1080/07391102.2010.10507333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Georgieva DN, Rypniewski W, Gabdoulkhakov A, Genov N, Betzel C. Asp49 phospholipase A2–elaidoylamide complex: a new mode of inhibition. Biochem Biophys Res Commun 2004; 319:1314-21. [PMID: 15194511 DOI: 10.1016/j.bbrc.2004.05.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dessislava N Georgieva
- Institut für Biochemie und Molekularbiologie I, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Ohno M, Chijiwa T, Oda-Ueda N, Ogawa T, Hattori S. Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 2004; 42:841-54. [PMID: 15019486 DOI: 10.1016/j.toxicon.2003.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After two decades of study, we draw the conclusion that venom-gland phospholipase A2 (PLA2) isozymes, including PLA2 myotoxins of Crotalinae snakes, have evolved in an accelerated manner to acquire their diverse physiological activities. In this review, we describe how accelerated evolution of venom PLA2 isozymes was discovered. This type of evolution is fundamental for other venom isozyme systems. Accelerated evolution of venom PLA2 isozyme genes is due to rapid change in exons, but not in introns and the flanking regions, being completely opposite to the case of the ordinary isozyme genes. The molecular mechanism by which proper base substitutions had occurred in the particular sites of venom isozyme genes is a puzzle to be solved in future studies. It should be noted that accelerated evolution occurred until the isozymes had acquired their particular function and, since then, they have evolved with less frequent mutation, possibly for functional conservation. We also found that interisland mutations occurred in venom PLA2 isozymes. The relationships between mutation and its driving force are speculative and the real mechanism remains a mystery.
Collapse
Affiliation(s)
- Motonori Ohno
- Department of Applied Life Science, Faculty of Engineering, Sojo University, Kumamoto 860-0082, Japan.
| | | | | | | | | |
Collapse
|
9
|
Sekar K, Vaijayanthi Mala S, Yogavel M, Velmurugan D, Poi MJ, Vishwanath BS, Gowda TV, Jeyaprakash AA, Tsai MD. Crystal structures of the free and anisic acid bound triple mutant of phospholipase A2. J Mol Biol 2003; 333:367-76. [PMID: 14529623 DOI: 10.1016/j.jmb.2003.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase A2 catalyses the hydrolysis of the ester bond of 3-sn-phosphoglycerides. Here, we report the crystal structures of the free and anisic acid-bound triple mutant (K53,56,120M) of bovine pancreatic phospholipase A2. In the bound triple mutant structure, the small organic molecule p-anisic acid is found in the active site, and one of the carboxylate oxygen atoms is coordinated to the functionally important primary calcium ion. The other carboxylate oxygen atom is hydrogen bonded to the phenolic hydroxyl group of Tyr69. In addition, the bound anisic acid molecule replaces one of the functionally important water molecules in the active site. The residues 60-70, which are in a loop (surface loop), are disordered in most of the bovine pancreatic phospholipase A2 structures. It is interesting to note that these residues are ordered in the bound triple mutant structure but are disordered in the free triple mutant structure. The organic crystallization ingredient 2-methyl-2,4-pentanediol is found near the active site of the free triple mutant structure. The overall tertiary folding and stereochemical parameters for the final models of the free and anisic acid-bound triple mutant are virtually identical.
Collapse
Affiliation(s)
- K Sekar
- Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chandra V, Jasti J, Kaur P, Dey S, Perbandt M, Srinivasan A, Betzel C, Singh TP. Crystal structure of a complex formed between a snake venom phospholipase A(2) and a potent peptide inhibitor Phe-Leu-Ser-Tyr-Lys at 1.8 A resolution. J Biol Chem 2002; 277:41079-85. [PMID: 12186870 DOI: 10.1074/jbc.m206130200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase A(2) is an important enzyme involved in the production of prostaglandins and their related compounds causing inflammatory disorders. Among the several peptides tested, the peptide Phe-Leu-Ser-Tyr-Lys (FLSYK) showed the highest inhibition. The dissociation constant (K(d)) for this peptide was calculated to be 3.57 +/- 0.05 x 10(-9) m. In order to further improve the degree of inhibition of phospholipase A(2), a complex between Russells viper snake venom phospholipase A(2) and a peptide inhibitor FLSYK was crystallized, and its structure was determined by crystallographic methods and refined to an R-factor of 0.205 at 1.8 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) (molecules A and B) and a peptide molecule specifically bound to molecule A only. The two molecules formed an asymmetric dimer. The dimerization caused a modification in the binding site of molecule A. The overall conformations of molecules A and B were found to be generally similar except three regions i.e. the Trp-31-containing loop (residues 25-34), the beta-wing consisting of two antiparallel beta-strands (residues 74-85) and the C-terminal region (residues 119-133). Out of the above three, the most striking difference pertains to the conformation of Trp-31 in the two molecules. The orientation of Trp-31 in molecule A was suitable for the binding of FLSYK, while it disallowed the binding of peptide to molecule B. The structure of the complex clearly shows that the peptide is so placed in the binding site of molecule A that the side chain of its lysine residue interacted extensively with the enzyme and formed several hydrogen bonds in addition to a strong electrostatic interaction with critical Asp-49. The C-terminal carboxylic group of the peptide interacted with the catalytic residue His-48.
Collapse
Affiliation(s)
- Vikas Chandra
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
In this study, the x-ray crystal structures of the calcium-free and calcium-bound forms of phospholipase A(2) (PLA(2)), produced extracellularly by Streptomyces violaceoruber, were determined by using the multiple isomorphous replacement and molecular replacement methods, respectively. The former and latter structures were refined to an R-factor of 18.8% at a 1.4-A resolution and an R-factor of 15.0% at a 1.6-A resolution, respectively. The overall structure of the prokaryotic PLA(2) exhibits a novel folding topology that demonstrates that it is completely distinct from those of eukaryotic PLA(2)s, which have been already determined by x-ray and NMR analyses. Furthermore, the coordination geometry of the calcium(II) ion apparently deviated from that of eukaryotic PLA(2)s. Regardless of the evolutionary divergence, the catalytic mechanism including the calcium(II) ion on secreted PLA(2) seems to be conserved between prokaryotic and eukaryotic cells. Demonstrating that the overall structure determined by x-ray analysis is almost the same as that determined by NMR analysis is useful to discuss the catalytic mechanism at the molecular level of the bacterial PLA(2).
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Institute of Pharmaceutical Sciences, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
12
|
Tatulian SA. Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J 2001; 80:789-800. [PMID: 11159446 PMCID: PMC1301277 DOI: 10.1016/s0006-3495(01)76058-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Phospholipase A2 (PLA2) hydrolyzes phospholipids to free fatty acids and lysolipids and thus initiates the biosynthesis of eicosanoids and platelet-activating factor, potent mediators of inflammation, allergy, apoptosis, and tumorigenesis. The relative contributions of the physical properties of membranes and the structural changes in PLA2 to the interfacial activation of PLA2, that is, a strong increase in the lipolytic activity upon binding to the surface of phospholipid membranes or micelles, are not well understood. The present results demonstrate that both binding of PLA2 to phospholipid bilayers and its activity are facilitated by membrane surface electrostatics. Higher PLA2 activity toward negatively charged membranes is shown to result from stronger membrane-enzyme electrostatic interactions rather than selective hydrolysis of the acidic lipid. Phospholipid hydrolysis by PLA2 is followed by preferential removal of the liberated lysolipid and accumulation of the fatty acid in the membrane that may predominantly modulate PLA2 activity by affecting membrane electrostatics and/or morphology. The previously described induction of a flexible helical structure in PLA2 during interfacial activation was more pronounced at higher negative charge densities of membranes. These findings identify a reciprocal relationship between the membrane surface properties, strength of membrane binding of PLA2, membrane-induced structural changes in PLA2, and the enzyme activation.
Collapse
Affiliation(s)
- S A Tatulian
- Section of Biochemistry and Biophysics, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
13
|
de Azevedo WF, Ward RJ, Gutiérrez JM, Arni RK. Structure of a Lys49-phospholipase A2 homologue isolated from the venom of Bothrops nummifer (jumping viper). Toxicon 1999; 37:371-84. [PMID: 10078866 DOI: 10.1016/s0041-0101(98)00189-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lys49-Phospholipase A2 (Lys49-PLA2) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. We have solved the structure of myotoxin-I, a Lys49-PLA2 homologue isolated from the venom of Bothrops nummifer (jumping viper) at 2.4 A resolution using molecular replacement techniques. The final model has been refined to a final R-factor of 18.4% (R-free = 23.2%), and shows excellent geometry. The myotoxin-I from Bothrops nummifer is dimeric in the crystalline state as has been observed for other Lys49-PLA2 homologues. In addition, a continuous electron density in the active site and substrate binding channel could be successfully modeled as a fatty-acid molecule.
Collapse
Affiliation(s)
- W F de Azevedo
- Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Tomoo K, Yamane A, Ishida T, Fujii S, Ikeda K, Iwama S, Katsumura S, Sumiya S, Miyagawa H, Kitamura K. X-ray crystal structure determination and molecular dynamics simulation of prophospholipase A2 inhibited by amide-type substrate analogues. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:178-86. [PMID: 9252105 DOI: 10.1016/s0167-4838(97)00041-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
X-ray crystal structures of bovine pancreas prophospholipase A2 (proPLA2) inhibited by two amide-type inhibitors, [(R)-2-dodecanoyl-amino-1-hexanolphosphocholine (DAHPc) and (R)-2-dodecanoylamino-1-hexanolphosphoglycol (DAHPg)], were determined to R = 0.208 and 0.215 using reflections with up to 2.1 A resolution, respectively. Both complex crystals lacked defined electron densities for the prosequence of the N-terminal and for a loop region consisting of residues 65-70, retaining the disordered feature observed in free proPLA2 despite stabilization due to complex formation. The polar and nonpolar moieties of the amide-type inhibitors were located in the calcium-binding pocket and in the N-terminal alpha-helical hydrophobic region of the enzyme, respectively. As for the amide group of the inhibitor, which is lacking in the true substrate, a strong hydrogen bond was formed between the NH of the inhibitor and the unprotonated N(delta1) atom of His-48, resulting in the tight binding of the inhibitor to proPLA2, as well as to PLA2. The 20-30 times more potent inhibitory activity of DAHPg than DAHPc toward PLA2 could be explained by hydrogen bond formation between the glycol OH of DAHPg and the carbonyl O of Asp-49. The seven residues of the N-terminal prosequence of proPLA2, though disordered, block the access of a water molecule to Ala-1 of PLA2 or change the hydrogen-bonding property of Ala-1 alpha-amino group, resulting in breakage of the water-mediated hydrogen-bond network which is commonly formed in PLA2. The results of molecular dynamics (MD) calculation in an aqueous solution at 300 K indicate that this, rather than the close contact between the prosequence and the residues 65-70 loop region, is the main reason why the latter region becomes flexible in proPLA2, compared with in PLA2.
Collapse
Affiliation(s)
- K Tomoo
- Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|