1
|
Piemontese E, Herfort A, Perevedentseva Y, Möller HM, Seitz O. Multiphosphorylation-Dependent Recognition of Anti-pS2 Antibodies against RNA Polymerase II C-Terminal Domain Revealed by Chemical Synthesis. J Am Chem Soc 2024; 146:12074-12086. [PMID: 38639141 PMCID: PMC11066871 DOI: 10.1021/jacs.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Phosphorylation is a major constituent of the CTD code, which describes the set of post-translational modifications on 52 repeats of a YSPTSPS consensus heptad that orchestrates the binding of regulatory proteins to the C-terminal domain (CTD) of RNA polymerase II. Phospho-specific antibodies are used to detect CTD phosphorylation patterns. However, their recognition repertoire is underexplored due to limitations in the synthesis of long multiphosphorylated peptides. Herein, we describe the development of a synthesis strategy that provides access to multiphosphorylated CTD peptides in high purity without HPLC purification for immobilization onto microtiter plates. Native chemical ligation was used to assemble 12 heptad repeats in various phosphoforms. The synthesis of >60 CTD peptides, 48-90 amino acids in length and containing up to 6 phosphosites, enabled a detailed and rapid analysis of the binding characteristics of different anti-pSer2 antibodies. The three antibodies tested showed positional selectivity with marked differences in the affinity of the antibodies for pSer2-containing peptides. Furthermore, the length of the phosphopeptides allowed a systematic analysis of the multivalent chelate-type interactions. The absence of multivalency-induced binding enhancements is probably due to the high flexibility of the CTD scaffold. The effect of clustered phosphorylation proved to be more complex. Recognition of pSer2 by anti-pSer2-antibodies can be prevented and, perhaps surprisingly, enhanced by the phosphorylation of "bystander" amino acids in the vicinity. The results have relevance for functional analysis of the CTD in cell biological experiments.
Collapse
Affiliation(s)
- Emanuele Piemontese
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Alina Herfort
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Yulia Perevedentseva
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Heiko M. Möller
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Oliver Seitz
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
2
|
Flores-Solis D, Lushpinskaia IP, Polyansky AA, Changiarath A, Boehning M, Mirkovic M, Walshe J, Pietrek LM, Cramer P, Stelzl LS, Zagrovic B, Zweckstetter M. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. Nat Commun 2023; 14:5979. [PMID: 37749095 PMCID: PMC10519987 DOI: 10.1038/s41467-023-41633-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023] Open
Abstract
Eukaryotic gene regulation and pre-mRNA transcription depend on the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II. Due to its highly repetitive, intrinsically disordered sequence, the CTD enables clustering and phase separation of Pol II. The molecular interactions that drive CTD phase separation and Pol II clustering are unclear. Here, we show that multivalent interactions involving tyrosine impart temperature- and concentration-dependent self-coacervation of the CTD. NMR spectroscopy, molecular ensemble calculations and all-atom molecular dynamics simulations demonstrate the presence of diverse tyrosine-engaging interactions, including tyrosine-proline contacts, in condensed states of human CTD and other low-complexity proteins. We further show that the network of multivalent interactions involving tyrosine is responsible for the co-recruitment of the human Mediator complex and CTD during phase separation. Our work advances the understanding of the driving forces of CTD phase separation and thus provides the basis to better understand CTD-mediated Pol II clustering in eukaryotic gene transcription.
Collapse
Affiliation(s)
- David Flores-Solis
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 35075, Göttingen, Germany
| | - Irina P Lushpinskaia
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 35075, Göttingen, Germany
| | - Anton A Polyansky
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Campus Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Arya Changiarath
- Faculty of Biology, Johannes Gutenberg University Mainz (JGU), Gresemundweg 2, 55128, Mainz, Germany
- KOMET1, Institute of Physics, Johannes Gutenberg University Mainz (JGU), Staudingerweg 9, 55099, Mainz, Germany
| | - Marc Boehning
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Milana Mirkovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Campus Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - James Walshe
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Lisa M Pietrek
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasße 3, 60438, Frankfurt am Main, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University Mainz (JGU), Gresemundweg 2, 55128, Mainz, Germany
- KOMET1, Institute of Physics, Johannes Gutenberg University Mainz (JGU), Staudingerweg 9, 55099, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Bojan Zagrovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Campus Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 35075, Göttingen, Germany.
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Lushpinskaia IP, Flores-Solis D, Zweckstetter M. Structure and phase separation of the C-terminal domain of RNA polymerase II. Biol Chem 2023; 404:839-844. [PMID: 37331973 DOI: 10.1515/hsz-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
The repetitive heptads in the C-terminal domain (CTD) of RPB1, the largest subunit of RNA Polymerase II (Pol II), play a critical role in the regulation of Pol II-based transcription. Recent findings on the structure of the CTD in the pre-initiation complex determined by cryo-EM and the novel phase separation properties of key transcription components offers an expanded mechanistic interpretation of the spatiotemporal distribution of Pol II during transcription. Current experimental evidence further suggests an exquisite balance between CTD's local structure and an array of multivalent interactions that drive phase separation of Pol II and thus shape its transcriptional activity.
Collapse
Affiliation(s)
- Irina P Lushpinskaia
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - David Flores-Solis
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Tarczewska A, Greb-Markiewicz B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int J Mol Sci 2019; 20:E5306. [PMID: 31653121 PMCID: PMC6862971 DOI: 10.3390/ijms20215306] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
The bHLH proteins are a family of eukaryotic transcription factors regulating expression of a wide range of genes involved in cell differentiation and development. They contain the Helix-Loop-Helix (HLH) domain, preceded by a stretch of basic residues, which are responsible for dimerization and binding to E-box sequences. In addition to the well-preserved DNA-binding bHLH domain, these proteins may contain various additional domains determining the specificity of performed transcriptional regulation. According to this, the family has been divided into distinct classes. Our aim was to emphasize the significance of existing disordered regions within the bHLH transcription factors for their functionality. Flexible, intrinsically disordered regions containing various motives and specific sequences allow for multiple interactions with transcription co-regulators. Also, based on in silico analysis and previous studies, we hypothesize that the bHLH proteins have a general ability to undergo spontaneous phase separation, forming or participating into liquid condensates which constitute functional centers involved in transcription regulation. We shortly introduce recent findings on the crucial role of the thermodynamically liquid-liquid driven phase separation in transcription regulation by disordered regions of regulatory proteins. We believe that further experimental studies should be performed in this field for better understanding of the mechanism of gene expression regulation (among others regarding oncogenes) by important and linked to many diseases the bHLH transcription factors.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
5
|
Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P, Darzacq X, Zweckstetter M. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol 2018; 25:833-840. [PMID: 30127355 DOI: 10.1038/s41594-018-0112-y] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is an intrinsically disordered low-complexity region that is critical for pre-mRNA transcription and processing. The CTD consists of hepta-amino acid repeats varying in number from 52 in humans to 26 in yeast. Here we report that human and yeast CTDs undergo cooperative liquid phase separation, with the shorter yeast CTD forming less-stable droplets. In human cells, truncation of the CTD to the length of the yeast CTD decreases Pol II clustering and chromatin association, whereas CTD extension has the opposite effect. CTD droplets can incorporate intact Pol II and are dissolved by CTD phosphorylation with the transcription initiation factor IIH kinase CDK7. Together with published data, our results suggest that Pol II forms clusters or hubs at active genes through interactions between CTDs and with activators and that CTD phosphorylation liberates Pol II enzymes from hubs for promoter escape and transcription elongation.
Collapse
Affiliation(s)
- Marc Boehning
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,CIRM Center of Excellence, University of California, Berkeley, California, USA
| | - Marija Rankovic
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Göttingen, Germany
| | - Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,CIRM Center of Excellence, University of California, Berkeley, California, USA
| | - Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Herve Marie-Nelly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,CIRM Center of Excellence, University of California, Berkeley, California, USA
| | - David T McSwiggen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,CIRM Center of Excellence, University of California, Berkeley, California, USA
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,CIRM Center of Excellence, University of California, Berkeley, California, USA
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA. .,CIRM Center of Excellence, University of California, Berkeley, California, USA.
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
6
|
Janke AM, Seo DH, Rahmanian V, Conicella AE, Mathews KL, Burke KA, Mittal J, Fawzi NL. Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment. Biochemistry 2017; 57:2549-2563. [PMID: 28945358 DOI: 10.1021/acs.biochem.7b00310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many cancer-causing chromosomal translocations result in transactivating protein products encoding FET family (FUS, EWSR1, TAF15) low-complexity (LC) domains fused to a DNA binding domain from one of several transcription factors. Recent work demonstrates that higher-order assemblies of FET LC domains bind the carboxy-terminal domain of the large subunit of RNA polymerase II (RNA pol II CTD), suggesting FET oncoproteins may mediate aberrant transcriptional activation by recruiting RNA polymerase II to promoters of target genes. Here we use nuclear magnetic resonance (NMR) spectroscopy and hydrogel fluorescence microscopy localization and fluorescence recovery after photobleaching to visualize atomic details of a model of this process, interactions of RNA pol II CTD with high-molecular weight TAF15 LC assemblies. We report NMR resonance assignments of the intact degenerate repeat half of human RNA pol II CTD alone and verify its predominant intrinsic disorder by molecular simulation. By measuring NMR spin relaxation and dark-state exchange saturation transfer, we characterize the interaction of RNA pol II CTD with amyloid-like hydrogel fibrils of TAF15 and hnRNP A2 LC domains and observe that heptads far from the acidic C-terminal tail of RNA pol II CTD bind TAF15 fibrils most avidly. Mutation of CTD lysines in heptad position 7 to consensus serines reduced the overall level of TAF15 fibril binding, suggesting that electrostatic interactions contribute to complex formation. Conversely, mutations of position 7 asparagine residues and truncation of the acidic tail had little effect. Thus, weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation.
Collapse
Affiliation(s)
- Abigail M Janke
- Department of Molecular Pharmacology, Physiology, and Biotechnology , Brown University , Providence , Rhode Island 02921 , United States
| | - Da Hee Seo
- Department of Molecular Pharmacology, Physiology, and Biotechnology , Brown University , Providence , Rhode Island 02921 , United States
| | - Vahid Rahmanian
- Department of Chemical and Biomolecular Engineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Alexander E Conicella
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Kaylee L Mathews
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Kathleen A Burke
- Department of Molecular Pharmacology, Physiology, and Biotechnology , Brown University , Providence , Rhode Island 02921 , United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology , Brown University , Providence , Rhode Island 02921 , United States.,Graduate Program in Molecular Biology, Cell Biology and Biochemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
7
|
Gibbs EB, Lu F, Portz B, Fisher MJ, Medellin BP, Laremore TN, Zhang YJ, Gilmour DS, Showalter SA. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15233. [PMID: 28497798 PMCID: PMC5437310 DOI: 10.1038/ncomms15233] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for Pol II function in vivo and capitalize on natural sequence variations within it to facilitate structural analysis. Mass spectrometry and NMR spectroscopy reveal that hyper-Ser5 phosphorylation transforms the local structure of this region via proline isomerization. The sequence context of this switch tunes the activity of the phosphatase Ssu72, leading to the preferential de-phosphorylation of specific heptads. Together, context-dependent conformational switches and biased dephosphorylation suggest a mechanism for the selective recruitment of cis-proline-specific regulatory factors and region-specific modulation of the CTD code that may augment gene regulation in developmentally complex organisms.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Feiyue Lu
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Fisher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brenda P Medellin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tatiana N Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Portz B, Lu F, Gibbs EB, Mayfield JE, Rachel Mehaffey M, Zhang YJ, Brodbelt JS, Showalter SA, Gilmour DS. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15231. [PMID: 28497792 PMCID: PMC5437306 DOI: 10.1038/ncomms15231] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.
Collapse
Affiliation(s)
- Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,The Huck Institutes of Life Sciences. The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua E Mayfield
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
9
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
10
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Knijnenburg AD, Kapoerchan VV, Grotenbreg GM, Spalburg E, de Neeling AJ, Mars-Groenendijk RH, Noort D, Otero JM, Llamas-Saiz AL, van Raaij MJ, Ravensbergen B, Nibbering PH, van der Marel GA, Overkleeft HS, Overhand M. Synthesis and evaluation of strand and turn modified ring-extended gramicidin S derivatives. Bioorg Med Chem 2011; 19:3402-9. [PMID: 21561781 DOI: 10.1016/j.bmc.2011.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/05/2011] [Accepted: 04/13/2011] [Indexed: 11/16/2022]
Abstract
In this paper, we describe the crystal structure of previously reported ring-extended gramicidin S (GS) derivative 2 (GS14K4), containing a d-amino acid residue in one of the β-strand regions. This structure is in agreement with a previously reported modeling study of the same molecule. The polar side chain of the additional d-amino acid residue is positioned at the same face of the molecule as the hydrophobic side chains, and we believe that because of this compound 2 is considerably less hydrophobic than extended GS derivatives in which the strand regions are exclusively composed of l-amino acids. Using this backbone structure as our benchmark we prepared a small series of ring-extended GS analogues featuring sugar amino acid dipeptide isosteres of varied hydrophobicity at the turn region. We show that via this approach hydrophobicity of extended GS analogues can be tuned without affecting the secondary structure (as observed from NMR and CD spectra). Biological evaluation reveals that hydrophobicity correlates to cell toxicity, but still bacteriolysis is induced with GS analogues that are too hydrophilic to efficiently lyse human red blood cells.
Collapse
|
12
|
Knijnenburg AD, Kapoerchan VV, Spalburg E, de Neeling AJ, Mars-Groenendijk RH, Noort D, van der Marel GA, Overkleeft HS, Overhand M. Tuning hydrophobicity of highly cationic tetradecameric Gramicidin S analogues using adamantane amino acids. Bioorg Med Chem 2010; 18:8403-9. [DOI: 10.1016/j.bmc.2010.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 11/25/2022]
|
13
|
Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37:337-52. [PMID: 18573085 DOI: 10.1146/annurev.biophys.37.032807.130008] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
Collapse
Affiliation(s)
- P Cramer
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kostek SA, Grob P, De Carlo S, Lipscomb JS, Garczarek F, Nogales E. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure 2007; 14:1691-700. [PMID: 17098194 DOI: 10.1016/j.str.2006.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/14/2006] [Accepted: 09/19/2006] [Indexed: 11/25/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is a central process in eukaryotic gene regulation. While atomic details exist for the yeast RNAPII, characterization of the human complex lags behind, mostly due to the inability to obtain large quantities of purified material. Although the complexes have the same protein composition and high sequence similarity, understanding of transcription and of transcription-coupled DNA repair (TCR) in humans will require the use of human proteins in structural studies. We have used cryo-electron microscopy, image reconstruction, and variance analysis to characterize the structure and dynamics of human RNAPII (hRNAPII). Our studies show that hRNAPII in solution parallels the conformational flexibility of the yeast structures crystallized in different states but also illustrate a more extensive conformational range with potential biological significance. This hRNAPII study will serve as a structural platform to build up higher-order transcription and TCR complexes and to gain information that may be unique to the human RNAPII system.
Collapse
Affiliation(s)
- Seth A Kostek
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
Collapse
Affiliation(s)
- Hemali P Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
16
|
Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P. A structural perspective of CTD function. Genes Dev 2005; 19:1401-15. [PMID: 15964991 DOI: 10.1101/gad.1318105] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) integrates nuclear events by binding proteins involved in mRNA biogenesis. CTD-binding proteins recognize a specific CTD phosphorylation pattern, which changes during the transcription cycle, due to the action of CTD-modifying enzymes. Structural and functional studies of CTD-binding and -modifying proteins now reveal some of the mechanisms underlying CTD function. Proteins recognize CTD phosphorylation patterns either directly, by contacting phosphorylated residues, or indirectly, without contact to the phosphate. The catalytic mechanisms of CTD kinases and phosphatases are known, but the basis for CTD specificity of these enzymes remains to be understood.
Collapse
Affiliation(s)
- Anton Meinhart
- Department of Chemistry and Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, Taylor IA, Ramos A. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Nat Struct Mol Biol 2005; 12:144-51. [PMID: 15665873 DOI: 10.1038/nsmb887] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/07/2004] [Indexed: 11/09/2022]
Abstract
The C-terminal domain (CTD) of the large subunit of RNA polymerase II is a platform for mRNA processing factors and links gene transcription to mRNA capping, splicing and polyadenylation. Pcf11, an essential component of the mRNA cleavage factor IA, contains a CTD-interaction domain that binds in a phospho-dependent manner to the heptad repeats within the RNA polymerase II CTD. We show here that the phosphorylated CTD exists as a dynamic disordered ensemble in solution and, by induced fit, it assumes a structured conformation when bound to Pcf11. In addition, we detected cis-trans populations for the CTD prolines, and found that only the all-trans form is selected for binding. These data suggest that the recognition of the CTD is regulated by independent site-specific modifications (phosphorylation and proline cis-trans isomerization) and, probably, by the local concentration of suitable binding sites.
Collapse
Affiliation(s)
- Christian G Noble
- Division of Protein Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Prenner EJ, Kiricsi M, Jelokhani-Niaraki M, Lewis RNAH, Hodges RS, McElhaney RN. Structure-activity relationships of diastereomeric lysine ring size analogs of the antimicrobial peptide gramicidin S: mechanism of action and discrimination between bacterial and animal cell membranes. J Biol Chem 2004; 280:2002-11. [PMID: 15542606 PMCID: PMC3251617 DOI: 10.1074/jbc.m406509200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-activity relationships were examined in seven gramicidin S analogs in which the ring-expanded analog GS14 [cyclo-(VKLKVdYPLKVKLdYP)] is modified by enantiomeric inversions of its lysine residues. The conformation, amphiphilicity, and self-association propensity of these peptides were investigated by circular dichroism spectroscopy and reversed phase high performance liquid chromatography. (31)P nuclear magnetic resonance spectroscopic and dye leakage experiments were performed to evaluate the capacity of these peptides to induce inverse nonlamellar phases in, and to permeabilize phospholipid bilayers; their growth inhibitory activity against the cell wall-less mollicute Acholeplasma laidlawii B was also examined. The amount and stability of beta-sheet structure, effective hydrophobicity, propensity for self-association in water, ability to disrupt the organization of phospholipid bilayers, and ability to inhibit A. laidlawii B growth are strongly correlated with the facial amphiphilicity of these GS14 analogs. Also, the magnitude of the parameters segregate these peptides into three groups, consisting of GS14, the four single inversion analogs, and the two multiple inversion analogs. The capacity of these peptides to differentiate between bacterial and animal cell membranes exhibits a biphasic relationship with peptide amphiphilicity, suggesting that there may only be a narrow range of peptide amphiphilicity within which it is possible to achieve the dual therapeutic requirements of high antibiotic effectiveness and low hemolytic activity. These results were rationalized by considering how the physiochemical properties of these GS14 analogs are likely to be reflected in their partitioning into lipid bilayer membranes.
Collapse
Affiliation(s)
- Elmar J. Prenner
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Monika Kiricsi
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Masood Jelokhani-Niaraki
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Robert S. Hodges
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - Ronald N. McElhaney
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- To whom correspondence should be addressed: Dept. of Biochemistry, University of Alberta, Medical Sciences Bldg., Alberta T6G 2H7, Canada. Tel.: 780-492-2413; Fax: 780-492-0095,
| |
Collapse
|
20
|
Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Nature 2004; 430:223-6. [PMID: 15241417 DOI: 10.1038/nature02679] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/21/2004] [Indexed: 11/08/2022]
Abstract
During transcription, RNA polymerase (Pol) II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing by the carboxy-terminal domain (CTD) of Pol II, which consists of up to 52 repeats of the sequence Tyr 1-Ser 2-Pro 3-Thr 4-Ser 5-Pro 6-Ser 7 (refs 1, 2). After phosphorylation, the CTD binds tightly to a conserved CTD-interacting domain (CID) present in the proteins Pcf11 and Nrd1, which are essential and evolutionarily conserved factors for polyadenylation-dependent and -independent 3'-RNA processing, respectively. Here we describe the structure of a Ser 2-phosphorylated CTD peptide bound to the CID domain of Pcf11. The CTD motif Ser 2-Pro 3-Thr 4-Ser 5 forms a beta-turn that binds to a conserved groove in the CID domain. The Ser 2 phosphate group does not make direct contact with the CID domain, but may be recognized indirectly because it stabilizes the beta-turn with an additional hydrogen bond. Iteration of the peptide structure results in a compact beta-spiral model of the CTD. The model suggests that, during the mRNA transcription-processing cycle, compact spiral regions in the CTD are unravelled and regenerated in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Anton Meinhart
- Department of Chemistry and Biochemistry, Gene Center, University of Munich, 81377 Munich, Germany
| | | |
Collapse
|
21
|
Shi Z, Woody RW, Kallenbach NR. Is polyproline II a major backbone conformation in unfolded proteins? ADVANCES IN PROTEIN CHEMISTRY 2004; 62:163-240. [PMID: 12418104 DOI: 10.1016/s0065-3233(02)62008-x] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhengshuang Shi
- Department of Chemistry, New York University, New York 10003, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
23
|
Mitsuzawa H, Kanda E, Ishihama A. Rpb7 subunit of RNA polymerase II interacts with an RNA-binding protein involved in processing of transcripts. Nucleic Acids Res 2003; 31:4696-701. [PMID: 12907709 PMCID: PMC169969 DOI: 10.1093/nar/gkg688] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 06/17/2003] [Accepted: 06/27/2003] [Indexed: 11/14/2022] Open
Abstract
Rpb4-Rpb7, a dissociable subcomplex of RNA polymerase II (pol II), is required for transcription initiation. To understand the role of Rpb7 in transcription initiation or other processes in transcription, we carried out a two-hybrid screen for proteins that interact with Rpb7 of the fission yeast Schizosaccharomyces pombe. The screen identified the S.pombe homolog of the Saccharomyces cerevisiae Nrd1, an RNA-binding protein implicated in 3' end formation of small nucleolar and small nuclear RNAs transcribed by pol II. The S.pombe protein, named Seb1 for seven binding, was essential for cell viability, and bound directly to Rpb7 in vitro. Saccharomyces cerevisiae Rpb7 also interacted with Nrd1, indicating that the interaction is conserved in evolution. Glu166 and/or Asp167 of S.pombe Rpb7, residues near the C-terminus of the 172 amino acid protein, were found to be important for its interaction with Seb1. Our results suggest that Rpb7 may function to anchor a processing factor to the pol II apparatus, thereby coupling RNA processing to transcription. The role for Rpb7 is consistent with its location in the pol II complex determined by recent structural studies.
Collapse
Affiliation(s)
- Hiroshi Mitsuzawa
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
24
|
Abstract
The first structure of a pre-mRNA processing factor bound to heptad repeats from the C-terminal domain of RNA polymerase II is revealed in a crystal of capping guanylyltransferase complexed with a four-repeat phosphopeptide.
Collapse
Affiliation(s)
- Arno Greenleaf
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| |
Collapse
|
25
|
Carty SM, Greenleaf AL. Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing. Mol Cell Proteomics 2002; 1:598-610. [PMID: 12376575 DOI: 10.1074/mcp.m200029-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using an interaction blot approach to search in the human nuclear proteome, we identified eight novel proteins that bind the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of RNA polymerase II. Unexpectedly, five of the new phosphoCTD-associating proteins (PCAPs) represent either enzymes that act on DNA and chromatin (topoisomerase I, DNA (cytosine-5) methyltransferase 1, poly(ADP-ribose) polymerase-1) or proteins known to bind DNA (heterogeneous nuclear ribonucleoprotein (hnRNP) U/SAF-A, hnRNP D). The other three PCAPs represent factors involved in pre-mRNA metabolism as anticipated (CA150, NSAP1/hnRNP Q, hnRNP R) (note that hnRNP U/SAF-A and hnRNP D are also implicated in pre-mRNA metabolism). Identifying as PCAPs proteins involved in diverse DNA transactions suggests that the range of phosphoCTD functions extends far beyond just transcription and RNA processing. In view of the activities possessed by the DNA-directed PCAPs, it is likely that the phosphoCTD plays important roles in genome integrity, epigenetic regulation, and potentially nuclear structure. We present a model in which the phosphoCTD association of the PCAPs poises them to act either on the nascent transcript or on the DNA/chromatin template. We propose that the phosphoCTD of elongating RNA polymerase II is a major organizer of nuclear functions.
Collapse
Affiliation(s)
- Sherry M Carty
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
26
|
Abstract
Diverse forms of pathologies can be derived from the lack of flexibility in tissues and the absence of required concentrations of certain types of proteins (e.g., amelogenesis imperfecta). beta-spirals using canonical proline-nucleated beta-turns in diverse proteins allow for vital functions including structural (mucin and amelogenin), respiratory (elastin), muscular (titin), and that of genetic expression (RNA polymerase II). These confer particular physical and chemical properties to proteins and therefore to the tissues in which they are found, while the pervasive presence of tandem repeats in the genome sequence indicates their importance. This paper discusses the general biomedical relevance of this structure, focusing on several proteins found in humans.
Collapse
|
27
|
Kumaki Y, Matsushima N, Yoshida H, Nitta K, Hikichi K. Structure of the YSPTSPS repeat containing two SPXX motifs in the CTD of RNA polymerase II: NMR studies of cyclic model peptides reveal that the SPTS turn is more stable than SPSY in water. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1548:81-93. [PMID: 11451441 DOI: 10.1016/s0167-4838(01)00216-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The carboxyl-terminal domain of RNA polymerase II, which is rich in phosphorylation sites, contains 17--52 tandem repeats with the consensus sequence of the heptapeptide, YSPTSPS. The repeat unit of the heptapeptide has two SPXX motifs showing potential beta-turns, SPTS and SPSY. NMR studies were performed in water at pH 4.0 for two cyclic peptides containing one and two repeat units, cyclo-[C(1)R(2)D(3)Y(4)S(5)P(6)T(7)S(8)P(9)S(10)Y(11)S(12)R(13)D(14)C(15)] (peptide 1) and cyclo-[C(1)R(2)D(3)Y(4)S(5)P(6)T(7)S(8)P(9)S(10)Y(11)S(12)P(13)T(14)S(15)P(16)N(17)Y(18)S(19)R(20)D(21)C(22)] (peptide 2), which are cyclized with a disulfide bridge of two Cys residues at the N- and C-termini. SP in 1 and 2 are predominantly in trans form. The following NMR parameters were detected: (1) lower temperature coefficients of amide proton chemical shifts of T7 and S8 in 1, and Tx (T7 or T14), Sx (S8 or S15), Tz (T14 or T7) and Sz (S15 or S8) in 2, (2) significantly large deviation of H(alpha) chemical shifts from its random coil value (Delta H(alpha)) of Pro preceding the Thr (P6 in 1, and Px and Pz in 2), (3) relatively large (3)J(HNH alpha) coupling constants (>8.7 Hz) of T7 in 1 and Tx and Tz in 2, and (4) NOE (d(NN) (i, i+1)) connectivities between the amide protons of T7-S8 and S10-Y11 in 1, and Tx-Sx, S10-Y11, Tz-Sz, and N17-Y18 in 2, although two Pro-Thr-Ser segments in 2 (each of these are annotated by 'x' and 'z') in the first and second repeat units were not distinguishable. Comparison of the NMR parameters between the cyclic peptides and the corresponding linear peptides indicates that cyclization promotes structural stabilization in water. The present NMR data were consistent with the presence of a beta-turn at both SPTS and SPSY: S(5)P(6)T(7)S(8) and S(8)P(9)S(10)Y(11) in 1, and SPxTxSx, SPzTzSz, SP(9)S(10)Y(11), SP(16)N(17)Y(18) in 2. However, the structure of the SPTS segment is more stable than that of the SPSY segment. Conformations consistent with NMR parameters including NOE distances were obtained through molecular dynamics and energy minimization methods. These calculations yielded two stable conformers for the SPTS segment. One of the two corresponds to a type I beta-turn.
Collapse
Affiliation(s)
- Y Kumaki
- High-Resolution NMR Laboratory, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
28
|
Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001; 292:1863-76. [PMID: 11313498 DOI: 10.1126/science.1059493] [Citation(s) in RCA: 941] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Conserved Sequence
- Crystallography, X-Ray
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Fourier Analysis
- Hydrogen Bonding
- Magnesium/metabolism
- Metals/metabolism
- Models, Molecular
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- P Cramer
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | |
Collapse
|
29
|
Morris DP, Greenleaf AL. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2000; 275:39935-43. [PMID: 10978320 DOI: 10.1074/jbc.m004118200] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed previously that the WW domain of the prolyl isomerase, Ess1, can bind the phosphorylated carboxyl-terminal domain (phospho-CTD) of the largest subunit of RNA Polymerase II. Analysis of phospho-CTD binding by four other WW domain-containing Saccharomyces cerevisiae proteins indicates the splicing factor, Prp40, and the RNA polymerase II ubiquitin ligase, Rsp5, can also bind the phospho-CTD. The identification of Prp40 as a phospho-CTD binding protein represents the first demonstration of direct interaction between a documented splicing factor and the phospho-CTD. Domain dissection studies reveal that phospho-CTD binding occurs at multiple locations in Prp40, including sites in both the WW and FF domain regions. Because the conserved repeats of the CTD make it an ideal ligand for multi-site binding events, the implications of multi-site binding are discussed. Our data suggest a mechanism by which the phospho-CTD of elongating RNA polymerase II facilitates commitment complex formation by juxtaposing the 5' and 3' splice sites.
Collapse
Affiliation(s)
- D P Morris
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
30
|
Bienkiewicz EA, Moon Woody A, Woody RW. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J Mol Biol 2000; 297:119-33. [PMID: 10704311 DOI: 10.1006/jmbi.2000.3545] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II consists of tandemly repeated copies of a heptapeptide with the Y(1)S(2)P(3)T(4)S(5)P(6)S(7) consensus sequence. This repeat contains two overlapping SPXX motifs that can adopt a beta-turn conformation. In addition, each CTD repeat contains the PXXP sequence characteristic of the left-handed helix of polyproline II (P(II)) found in SH3 domain ligands and the PXY sequence that is the target for WW domains. We have studied CTD fragments using circular dichroism (CD) to characterize the conformation of the CTD in water and in the hydrogen bond-promoting solvent trifluoroethanol (TFE). In water, an eight-repeat fragment is predominantly unordered, but at 32 degrees C has P(II) and beta-turn contents estimated to be about 15 % and less than 10 %, respectively. In 90 % TFE, the beta-turn fraction is estimated to be about 75 %, the remainder being unordered and P(II) conformations. The Tyr side-chains are ordered to a significant extent in 90 % TFE. Replacement of the fully conserved Pro residues by alpha-aminoisobutyric acid leads to a large increase in beta-turn. Replacement of Ser2 by Ala does not substantially alter the CTD conformation in water or TFE. Ser5 replacement by Ala increases the P(II) content in water and affects the conformation in TFE-rich solutions. Phosphorylation of Ser2 and Ser5 has little effect in water, but Ser2 affects the conformation in TFE-rich solution in much the same way as Ser5-->Ala substitution. The CD of the full-length murine CTD in water is similar to that of the eight-repeat fragment, indicating little difference in conformation with increasing chain length beyond eight repeats. The roles of P(II) and beta-turn in the interaction of CTD with its target proteins (mediator and RNA-processing components) are discussed. The most likely interactions are between P(II) and WW or SH3 domains, or with some unknown P(II)-binding motif.
Collapse
Affiliation(s)
- E A Bienkiewicz
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
31
|
Douziech M, Forget D, Greenblatt J, Coulombe B. Topological localization of the carboxyl-terminal domain of RNA polymerase II in the initiation complex. J Biol Chem 1999; 274:19868-73. [PMID: 10391932 PMCID: PMC4492719 DOI: 10.1074/jbc.274.28.19868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) functions at multiple stages of transcription and is involved in the coupling of transcription to pre-mRNA processing. We have used site-specific protein-DNA photocross-linking to determine the position of the CTD along promoter DNA in the transcriptional pre-initiation complex. Comparison of the promoter contacts made by RNAP II with or without the CTD indicate that the CTD approaches promoter DNA downstream of the transcriptional initiation site between positions +16 and +26. Incubation of pre-assembled initiation complexes with antibodies to the CTD prior to UV irradiation led to specific photocross-linking of the IgG heavy chain to nucleotide +17, indicating that the CTD is accessible for protein-protein interactions in a complex containing RNAP II and the general initiation factors. In conjunction with previously published observations, our structural data are fully compatible with the notion that DNA wrapping around RNAP II places the CTD and the RNA exit channel into juxtaposition and provide a rationale for contacts between the SRB-mediator complex and core RNAP II observed in the RNAP II holoenzyme.
Collapse
Affiliation(s)
- M Douziech
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
| | | | | | | |
Collapse
|
32
|
Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD, Hancock RE, Hodges RS. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem 1999; 274:13181-92. [PMID: 10224074 DOI: 10.1074/jbc.274.19.13181] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the role of amphipathicity in a homologous series of head-to-tail cyclic antimicrobial peptides in efforts to delineate features resulting in high antimicrobial activity coupled with low hemolytic activity (i.e. a high therapeutic index). The peptide GS14, cyclo(VKLKVd-YPLKVKLd-YP), designed on the basis of gramicidin S (GS), exists in a preformed highly amphipathic beta-sheet conformation and was used as the base compound for this study. Fourteen diastereomers of GS14 were synthesized; each contained a different single enantiomeric substitution within the framework of GS14. The beta-sheet structure of all GS14 diastereomers was disrupted as determined by CD and NMR spectroscopy under aqueous conditions; however, all diastereomers exhibited differential structure inducibility in hydrophobic environments. Because the diastereomers all have the same composition, sequence, and intrinsic hydrophobicity, the amphipathicity of the diastereomers could be ranked based upon retention time from reversed-phase high performance liquid chromatography. There was a clear correlation showing that high amphipathicity resulted in high hemolytic activity and low antimicrobial activity in the diastereomers. The latter may be the result of increased affinity of highly amphipathic peptides to outer membrane components of Gram-negative microorganisms. The diastereomers possessing the most favorable therapeutic indices possessed some of the lowest amphipathicities, although there was a threshold value below which antimicrobial activity decreased. The best diastereomer exhibited 130-fold less hemolytic activity compared with GS14, as well as greatly increased antimicrobial activities, resulting in improvement in therapeutic indices of between 1,000- and 10,000-fold for a number of microorganisms. The therapeutic indices of this peptide were between 16- and 32-fold greater than GS for Gram-negative microorganisms and represents a significant improvement in specificity over GS. Our findings show that a highly amphipathic nature is not desirable in the design of constrained cyclic antimicrobial peptides and that an optimum amphipathicity can be defined by systematic enantiomeric substitutions.
Collapse
Affiliation(s)
- L H Kondejewski
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rickert P, Corden JL, Lees E. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 1999; 18:1093-102. [PMID: 10023686 DOI: 10.1038/sj.onc.1202399] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II is important for basal transcriptional processes in vivo and for cell viability. Several kinases, including certain cyclin-dependent kinases, can phosphorylate this substrate in vitro. It has been proposed that differential CTD phosphorylation by different kinases may regulate distinct transcriptional processes. We have found that two of these kinases, cyclin C/CDK8 and cyclin H/CDK7/p36, can specifically phosphorylate distinct residues in recombinant CTD substrates. This difference in specificity may be largely due to their varying ability to phosphorylate lysine-substituted heptapeptide repeats within the CTD, since they phosphorylate the same residue in CTD consensus heptapeptide repeats. Furthermore, this substrate specificity is reflected in vivo where cyclin C/ CDK8 and cyclin H/CDK7/p36 can differentially phosphorylate an endogenous RNA polymerase II substrate. Several small-molecule kinase inhibitors have different specificities for these related kinases, indicating that these enzymes have diverse active-site conformations. These results suggest that cyclin C/CDK8 and cyclin H/CDK7/p36 are physically distinct enzymes that may have unique roles in transcriptional regulation mediated by their phosphorylation of specific sites on RNA polymerase II.
Collapse
Affiliation(s)
- P Rickert
- Department of Cell Signaling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
34
|
|
35
|
Simanek EE, Huang DH, Pasternack L, Machajewski TD, Seitz O, Millar DS, Dyson HJ, Wong CH. Glycosylation of Threonine of the Repeating Unit of RNA Polymerase II with β-Linked N-Acetylglucosame Leads to a Turnlike Structure. J Am Chem Soc 1998. [DOI: 10.1021/ja982312w] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric E. Simanek
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Dee-Hua Huang
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Laura Pasternack
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Timothy D. Machajewski
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Oliver Seitz
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - David S. Millar
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - H. Jane Dyson
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Chi-Huey Wong
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
36
|
Morris DP, Stevens RD, Greenleaf AL. Protonation of the neutral repeats of the RNA polymerase II CTD. Biochem Biophys Res Commun 1998; 245:53-8. [PMID: 9535782 DOI: 10.1006/bbrc.1998.8373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CTD (carboxy-terminal repeat domain) of the largest subunit of RNA Polymerase II in most eukaryotes consists of from 26 to 52 seven amino acid repeats, the consensus sequence of which is YSPTSPS. Even though this consensus repeat does not contain residues that are normally protonated under the conditions used for positive ion electrospray mass spectrometry, we find that the CTD acquires about one proton per repeat when analyzed by this procedure. We have termed this phenomenon superprotonation. Superprotonation is apparently a property of the consensus sequence as the repeat peptide, (YSPTSPS)4, is superprotonated whereas other proteins and the repeat peptides (YSPTSPK)4, (YSPTSPR)4 and (YSPTAPR)4 are not. The highly conserved nature of the contiguous consensus repeats in organisms ranging from yeast to mammals implies that the functionally significant behavior of the domain is easily perturbed. We propose that CTD superprotonation is a manifestation of a unique biophysical property that will influence and could be the basis for consensus repeat function in vivo.
Collapse
Affiliation(s)
- D P Morris
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | |
Collapse
|
37
|
Trigon S, Serizawa H, Conaway JW, Conaway RC, Jackson SP, Morange M. Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J Biol Chem 1998; 273:6769-75. [PMID: 9506978 DOI: 10.1074/jbc.273.12.6769] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal part of the largest subunit of eukaryotic RNA polymerase II is composed solely of the highly repeated consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This domain, called the C-terminal domain (CTD), is phosphorylated mostly at serine residues during transcription initiation, but the precise role of this phosphorylation remains controversial. Several protein kinases are able to phosphorylate this sequence in vitro. The aim of this work was to define the positions of the amino acids phosphorylated by four of these CTD kinases (transcription factor (TF) IIH-kinase, DNA-dependent protein kinase, and the mitogen-activated protein kinases ERK1 and ERK2) and to compare the specificity of these different protein kinases. We show that TFIIH kinase and the mitogen-activated protein kinases phosphorylate only serine 5 of the CTD sequence, whereas DNA-dependent protein kinase phosphorylates serines 2 and 7. Among the different CTD kinases, only TFIIH kinase is appreciably more active on two repeats of the consensus sequence than on one motif. These in vitro results can provide some clues to the nature of the protein kinases responsible for the in vivo phosphorylation of the RNA polymerase CTD. In particular, the ratio of phosphorylated serine to threonine observed in vivo cannot be explained if TFIIH kinase is the only protein kinase involved in the phosphorylation of the CTD.
Collapse
Affiliation(s)
- S Trigon
- Ecole Normale Superieure, Unité de Génétique Moléculaire, 46, rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
38
|
Patturajan M, Schulte RJ, Sefton BM, Berezney R, Vincent M, Bensaude O, Warren SL, Corden JL. Growth-related changes in phosphorylation of yeast RNA polymerase II. J Biol Chem 1998; 273:4689-94. [PMID: 9468530 DOI: 10.1074/jbc.273.8.4689] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The largest subunit of RNA polymerase II contains a unique C-terminal domain (CTD) consisting of tandem repeats of the consensus heptapeptide sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Two forms of the largest subunit can be separated by SDS-polyacrylamide gel electrophoresis. The faster migrating form termed IIA contains little or no phosphate on the CTD, whereas the slower migrating II0 form is multiply phosphorylated. CTD kinases with different phosphoryl acceptor specificities are able to convert IIA to II0 in vitro, and different phosphoisomers have been identified in vivo. In this paper we report the binding specificities of a set of monoclonal antibodies that recognize different phosphoepitopes on the CTD. Monoclonal antibodies like H5 recognize phosphoserine in position 2, whereas monoclonal antibodies like H14 recognize phosphoserine in position 5. The relative abundance of these phosphoepitopes changes when growing yeast enter stationary phase or are heat-shocked. These results indicate that phosphorylation of different CTD phosphoacceptor sites are independently regulated in response to environmental signals.
Collapse
Affiliation(s)
- M Patturajan
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Harding MM, Krippner GY, Shelton CJ, Rodger A, Sanders KJ, Mackay JP, Prakash AS. DNA-binding studies of XSPTSPSZ, derivatives of the intercalating heptad repeat of RNA polymerase II. Biopolymers 1997; 42:387-98. [PMID: 9283289 DOI: 10.1002/(sici)1097-0282(19971005)42:4<387::aid-bip2>3.0.co;2-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis, solution conformation, and interaction with DNA of three 8-residue peptides structurally related to the heptad repeat unit found at the C-terminus of RNA polymerase II are reported. Peptides QQ, XQ, and PQ are derived from the parent sequence YSPTSPSY (peptide YY), which was reported to bind to DNA by bisintercalation [M. Suzuki (1990) Nature, Vol. 344, pp. 562-565], and contain either a 2-quinolyl (Q), 2-quinoxolyl (X), or 5-phenanthrolyl (P) group in place of the aromatic side chains of the N- and C-terminal tyrosine residues present in the parent sequence. The combined results of linear dichroism and induced CD measurements of peptides QQ, XQ, and PQ with calf thymus DNA are consistent with weak binding of the peptides to DNA in a preferred orientation in which the chromophores are intercalated. Small increases in the melting temperatures of poly[d(A-T)2] are also consistent with the peptides interacting with DNA. While enzymatic footprinting with DNase I showed no protection from cleavage by the enzyme, chemical footprinting with fotemustine showed that the peptides modify the reactivity of the major groove, presumably via minor groove binding. Peptide QQ inhibited fotemustine alkylation significantly more than either XQ or PQ, and slightly more than YY. In aqueous solution, nmr experiments on QQ, XQ, and PQ show a significant population of a conformation in which Ser2-Pro3-Thr4-Ser5 form both type I and type II beta-turn conformations in equilibrium with open chain conformations. Nuclear magnetic resonance titration experiments of PQ with (GCGTACGC)2 showed small changes in chemical shifts, consistent with the formation of a weak nonspecific complex. Analogous experiments, using peptides QQ and XQ with (GCGTACGC)2, and peptide YY with (CGTACG)2, showed no evidence for the interaction of the peptides with these oligonucleotides. These results show that peptides of general structure XSPTSPSZ are weak nonspecific DNA binders that differ significantly from previously characterized S(T)PXX DNA-binding motifs that are generally AT-selective minor groove binders.
Collapse
Affiliation(s)
- M M Harding
- School of Chemistry, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, Corden JL. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A 1996; 93:6975-80. [PMID: 8692929 PMCID: PMC38919 DOI: 10.1073/pnas.93.14.6975] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although transcription and pre-mRNA processing are colocalized in eukaryotic nuclei, molecules linking these processes have not previously been described. We have identified four novel rat proteins by their ability to interact with the repetitive C-terminal domain (CTD) of RNA polymerase II in a yeast two-hybrid assay. A yeast homolog of one of the rat proteins has also been shown to interact with the CTD. These CTD-binding proteins are all similar to the SR (serine/arginine-rich) family of proteins that have been shown to be involved in constitutive and regulated splicing. In addition to alternating Ser-Arg domains, these proteins each contain discrete N-terminal or C-terminal CTD-binding domains. We have identified SR-related proteins in a complex that can be immunoprecipitated from nuclear extracts with antibodies directed against RNA polymerase II. In addition, in vitro splicing is inhibited either by an antibody directed against the CTD or by wild-type but not mutant CTD peptides. Thus, these results suggest that the CTD and a set of CTD-binding proteins may act to physically and functionally link transcription and pre-mRNA processing.
Collapse
Affiliation(s)
- A Yuryev
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The titration of an aqueous solution of a de novo designed peptide with trifluoroethanol (TFE) shows complete helix formation with the addition of only 30% TFE. A molecular simulation of the peptide, in which a single shell of TFE molecules initially surrounds the peptide, reveals preferred sites of solvent interaction. The TFE molecules show greater preference for the hydrophobic compared with hydrophilic side chains. The helix-enhancing ability of TFE in aqueous solution may be rationalized in terms of stabilizing the hydrophobic collapse of apolar side chains of the formed helix.
Collapse
Affiliation(s)
- M J Bodkin
- Department of Crystallography Birkbeck College, University of London, UK
| | | |
Collapse
|
42
|
Dobbins JR, Murali N, Long EC. Structural redesign and stabilization of the overlapping tandem beta-turns of RNA polymerase II. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 47:260-8. [PMID: 8738651 DOI: 10.1111/j.1399-3011.1996.tb01354.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peptides representing single repeat units of the carboxy-terminal domain (CTD) of RNA polymerase II (Tyr-Ser-Pro-Thr-Ser-Pro-Ser-Tyr-NH2, 1) contain overlapping Ser-Pro-Xaa-Xaa beta-turn forming sites which permit their overall structure to closely resemble members of the quinoxaline class of antitumor DNA bisintercalators. We have modified this native sequence at the i+2 positions of each beta-turn unit by substituting Gly or D-Ala in an attempt to preorganize this structure in aqueous solution. CD and NMR spectroscopic investigations confirmed the presence of type II beta-turns within each of the substituted peptides in contrast to the native sequence which contains a relatively low population of turn structure. In addition, an examination of singly substituted peptides suggests that an increase in the population of beta-turn structure within the amino-terminal Ser-Pro-Xaa-Xaa site also increased the formation of beta-turn structure in the carboxy-terminal (unmodified) Ser-Pro-Xaa-Xaa site; in comparison, substitution in the carboxy-terminal site did not influence structure in the remaining portion of the peptide. Overall, these results suggest that the structures formed could provide unique, preorganized linkers for the construction of novel DNA-interactive bisintercalators.
Collapse
Affiliation(s)
- J R Dobbins
- Department of Chemistry, Indiana University Purdue University-Indianapolis, USA
| | | | | |
Collapse
|
43
|
Reese J, Katzenellenbogen B. Characterization of a temperature-sensitive mutation in the hormone binding domain of the human estrogen receptor. Studies in cell extracts and intact cells and their implications for hormone-dependent transcriptional activation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50174-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|