1
|
Xu Y, Liu RR, Yu XJ, Liu XN, Zhang X, Jiang ZH, Cong ZF, Li QQ, Gao P. Quality markers of Dajianzhong decoction based on multicomponent qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:146-162. [PMID: 37731278 DOI: 10.1002/pca.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-β-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Run-Run Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Jun Yu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiao-Nan Liu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhi-Hui Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhu-Feng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, P. R. China
| | - Qin-Qing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| |
Collapse
|
2
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Yamamoto M. KAMPOmics: A framework for multidisciplinary and comprehensive research on Japanese traditional medicine. Gene X 2022; 831:146555. [PMID: 35569769 DOI: 10.1016/j.gene.2022.146555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Traditional Japanese medicines, known as "Kampo medicines", are pharmaceutical-grade multi-herbal treatments that are integrated within the modern medical system in Japan. Although basic and clinical research including placebo-controlled double-blind trials is attempting to clarify their effectiveness and mechanisms of action, such studies are seriously limited due to the multi-targeted, multi-component "long-tail" properties of Kampo medicines, which are fundamentally different from modern western therapeutics. However, recent progress in high-throughput analytical technology, coupled with an exponential increase in biomedical information on various levels from molecular biology to clinical "big" data, is enabling us to commence a multidisciplinary and comprehensive investigation of Kampo medicines based on multi-omics, bio-informatics, and systems biology. In addition to deriving an inclusive understanding of the benefits and mechanisms of Kampo medicines, "KAMPOmics" may lead to the development of new principles to control and treat diseases in a systems-oriented manner. Furthermore, elucidation of "sho" and "mibyo" - classical concepts of Kampo, which loosely approximate to the notions of "precise medicine" and "pre-symptomatic aberration", respectively - may contribute to the development of patient-oriented medicine, an area attracting enormous growth and interest in contemporary medicine.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Yoshiwara 3586, Ami, Inashiki, Ibaraki 300-1192, Japan.
| |
Collapse
|
4
|
Application of Traditional Chinese Medicines in Postoperative Abdominal Adhesion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8073467. [PMID: 32419827 PMCID: PMC7199640 DOI: 10.1155/2020/8073467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Adhesion is a frequent complication after abdominal surgery. Although various methods have been applied to prevent and treat postoperative abdominal adhesion (PAA), few modern drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far. There is an imperative to develop some new strategies for the treatment of PAA. Traditional Chinese medicine (TCM) has been widely practiced for thousands of years and played an indispensable role in the prevention and treatment of diseases. Modern medicine researchers have accepted the therapeutic effects of many active components derived from Chinese medicinal herbs. The review stresses the most commonly used TCM treatment, including Chinese medicinal herbals and monomers, TCM formulas, and acupuncture treatment.
Collapse
|
5
|
Kubota K, Mase A, Matsushima H, Fujitsuka N, Yamamoto M, Morine Y, Taketomi A, Kono T, Shimada M. Daikenchuto, a traditional Japanese herbal medicine, promotes colonic transit by inducing a propulsive movement pattern. Neurogastroenterol Motil 2019; 31:e13689. [PMID: 31374154 PMCID: PMC6852043 DOI: 10.1111/nmo.13689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The traditional Japanese herbal medicine, daikenchuto (DKT), has been used to treat constipation and postoperative ileus. However, the precise mechanisms involved in the pharmacological effects of DKT remain uncertain. The aim of this study was to clarify the effect of DKT on motor patterns and transit activity in the isolated rat colon. METHODS The entire colon or segments of the proximal colon in rats were isolated and placed in Krebs solution. The motility of the colon was evaluated by analyzing spatiotemporal maps of diameter derived from video imaging and measuring the intraluminal pressure in the anal end of the proximal colon, and the transit time of a plastic bead through the entire isolated colon. KEY RESULTS Several types of propagating contractions were observed in the isolated entire colon. When DKT was added to Krebs solution, the frequency of large-extent anal propagating contractions increased. DKT treatment increased the intraluminal pressure in the isolated proximal colon, which was related to the propagating contractions. This effect was abolished by treatment with the neural blocker tetrodotoxin. These findings suggest DKT induced peristaltic contractions in the isolated colon. DKT accelerated colonic transit activity, which was related to peristaltic contractions induction in the colon. These effects were also observed in the colons treated with bethanechol and the active ingredient of DKT, hydroxy-α-sanshool. CONCLUSIONS AND INFERENCES Daikenchuto could enhance colonic transit activity by inducing peristaltic contractions, which may be mediated by the activation of the enteric nervous system in the colon.
Collapse
Affiliation(s)
- Kunitsugu Kubota
- Tsumura Kampo Research LaboratoriesTsumura & Co.IbarakiJapan,Department of Digestive Surgery and TransplantationTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Akihito Mase
- Tsumura Kampo Research LaboratoriesTsumura & Co.IbarakiJapan
| | | | - Naoki Fujitsuka
- Tsumura Kampo Research LaboratoriesTsumura & Co.IbarakiJapan
| | | | - Yuji Morine
- Department of Digestive Surgery and TransplantationTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Toru Kono
- Department of Digestive Surgery and TransplantationTokushima University Graduate School of Biomedical SciencesTokushimaJapan,Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan,Center for Clinical and Biomedical ResearchSapporo Higashi Tokushukai HospitalSapporoJapan
| | - Mitsuo Shimada
- Department of Digestive Surgery and TransplantationTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| |
Collapse
|
6
|
Abe T, Kunimoto M, Hachiro Y, Ohara K, Murakami M. Clinical efficacy of Japanese herbal medicine daikenchuto in the management of fecal incontinence: A single-center, observational study. JOURNAL OF THE ANUS RECTUM AND COLON 2019; 3:160-166. [PMID: 31768466 PMCID: PMC6845288 DOI: 10.23922/jarc.2019-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023]
Abstract
Objectives: The purpose of this study was to investigate whether the symptoms of fecal incontinence (FI) or anal sphincter dysfunction are improved by daikenchuto (DKT). Methods: This is a retrospective observational study that analyzes the effects of DKT. The study was conducted at Kunimoto Hospital. Patients who visited the hospital from January 2012 to December 2016 due to symptoms of FI with a certain degree of chronic constipation and who took DKT were enrolled. The drug to be evaluated was “Tsumura Daikenchuto Extract Granules for Ethical Use (TJ-100)” manufactured by Tsumura & Co., Tokyo, Japan. The primary outcome measures were changes in the scores of the Cleveland Clinic Incontinence Score (CCIS) and Constipation Scoring System (CSS) before and after the administration of DKT. Results: A total of 157 patients were enrolled. On the CCIS, “leakage of solid stool,” “leakage of liquid stool,” “pad use,” and “total score” were significantly improved. On the contrary, on the CSS, the score of “type of assistance” was significantly improved after the administration of DKT, but no significant difference was found in the total score. On the Bristol Stool Form Scale, the administration of DKT showed a tendency to normalize stool consistency. Maximum resting anal pressure and maximum squeeze anal pressure significantly increased after the administration of DKT. No side effects caused by DKT were observed during the study. Conclusions: DKT appears to be a safe and useful agent for the management of FI in patients with defecation disorders and internal anal sphincter dysfunction.
Collapse
Affiliation(s)
- Tatsuya Abe
- Department of Proctology, Kunimoto Hospital, Asahikawa, Japan
| | - Masao Kunimoto
- Department of Proctology, Kunimoto Hospital, Asahikawa, Japan
| | | | - Kei Ohara
- Department of Proctology, Kunimoto Hospital, Asahikawa, Japan
| | | |
Collapse
|
7
|
Toyokawa Y, Takagi T, Uchiyama K, Mizushima K, Inoue K, Ushiroda C, Kashiwagi S, Nakano T, Hotta Y, Tanaka M, Dohi O, Okayama T, Yoshida N, Katada K, Kamada K, Ishikawa T, Handa O, Konishi H, Naito Y, Itoh Y. Ginsenoside Rb1 promotes intestinal epithelial wound healing through extracellular signal-regulated kinase and Rho signaling. J Gastroenterol Hepatol 2019; 34:1193-1200. [PMID: 30394577 DOI: 10.1111/jgh.14532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM Daikenchuto, a traditional Japanese herbal medicine, has been reported to exhibit anti-inflammatory effects against intestinal inflammation. However, whether daikenchuto has a therapeutic effect against intestinal mucosal injuries remains unclear. Thus, the aim of this study was to determine the effect of daikenchuto on intestinal mucosal healing. METHODS Colitis was induced in male Wistar rats by using trinitrobenzenesulfonic acid. Daikenchuto (900 mg/kg/day) was administered for 7 days after the induction of colitis. Thereafter, intestinal mucosal injuries were evaluated by determining the colonic epithelial regeneration ratio ([area of epithelial regeneration/area of ulcer] × 100). Restoration of rat intestinal epithelial cells treated with daikenchuto and its constituent herbs (Zanthoxylum fruit, processed ginger, and ginseng) and ginsenoside Rb1, which is a ginseng ingredient, was evaluated using a wound-healing assay. RESULTS The colon epithelial regeneration ratio in the daikenchuto-treated rats was significantly higher than that in the control rats. Daikenchuto, ginseng, and ginsenoside Rb1 enhanced wound healing, and the ginsenoside Rb1-induced enhancement was inhibited by extracellular signal-regulated kinase and Rho inhibitors. CONCLUSIONS Daikenchuto and its constituent, ginsenoside Rb1, promoted wound healing. Because mucosal healing is one of the most important therapeutic targets in patients with inflammatory bowel disease, ginsenoside Rb1 may be a novel therapeutic agent against intestinal mucosal damage such as that occurring in intestinal bowel disease.
Collapse
Affiliation(s)
- Yuki Toyokawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Nakano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuma Hotta
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Tanaka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Handa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H, Chang EB. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 2018; 5. [PMID: 28971602 PMCID: PMC5625165 DOI: 10.1002/prp2.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU‐100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU‐100 on drug metabolism have not been investigated. In this study, we analyzed the effect of TU‐100 on expression of key drug‐metabolizing enzymes (DMEs) and drug transporters (DTs) in murine liver and gastrointestinal tract using a dietary model. Liver, jejunum, and proximal colon were analyzed for phase I and II DMEs and DT mRNA expression by reverse transcription (RT) first by nonquantitative and followed by quantitative polymerase chain reaction (PCR) and protein expression. Liver, jejunum, and proximal colon expressed some identical but also unique DMEs and DTs. TU‐100 increased the greatest changes in cytochrome (Cyp) 2b10 and Cyp3a11 and Mdr1a. Basal and TU‐100 stimulated levels of DME and DT expression were gender‐dependent, dose‐dependent and reversible after cessation of TU‐100 supplementation, except for some changes in the intestine. Quantitative Western blot analysis of protein extracts confirmed the quantitative PCR results.
Collapse
Affiliation(s)
- Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mark W Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | | | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan.,Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Miyoshi J, Nobutani K, Musch MW, Ringus DL, Hubert NA, Yamamoto M, Kase Y, Nishiyama M, Chang EB. Time-, Sex-, and Dose-Dependent Alterations of the Gut Microbiota by Consumption of Dietary Daikenchuto (TU-100). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7415975. [PMID: 29681983 PMCID: PMC5842691 DOI: 10.1155/2018/7415975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
Abstract
Medications or dietary components can affect both the host and the host's gut microbiota. Changes in the microbiota may influence medication efficacy and interactions. Daikenchuto (TU-100), a herbal medication, comprised of ginger, ginseng, and Japanese pepper, is widely used in Japanese traditional Kampo medicine for intestinal motility and postoperative paralytic ileus. We previously showed in mice that consumption of TU-100 for 4 weeks changed the gut microbiota and increased bioavailability of bacterial ginsenoside metabolites. Since TU-100 is prescribed in humans for months to years, we examined the time- and sex-dependent effects of TU-100 on mouse gut microbiota. Oral administration of 1.5% TU-100 for 24 weeks caused more pronounced changes in gut microbiota in female than in male mice. Changes in both sexes largely reverted to baseline upon TU-100 withdrawal. Effects were time and dose dependent. The microbial profiles reverted to baseline within 4 weeks after withdrawal of 0.75% TU-100 but were sustained after withdrawal of 3% TU-100. In summary, dietary TU-100 changed mouse microbiota in a time-, sex-, and dose-dependent manner. These findings may be taken into consideration when determining optimizing dose for conditions of human health and disease with the consideration of differences in composition and response of the human intestinal microbiota.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Daina L. Ringus
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Nathaniel A. Hubert
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | | | - Yoshio Kase
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Tsuchiya K, Kubota K, Ohbuchi K, Kaneko A, Ohno N, Mase A, Matsushima H, Yamamoto M, Miyano K, Uezono Y, Kono T. Transient receptor potential ankyrin 1 agonists improve intestinal transit in a murine model of postoperative ileus. Neurogastroenterol Motil 2016; 28:1792-1805. [PMID: 27284001 DOI: 10.1111/nmo.12877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stimulation of transient receptor potential ankyrin 1 (TRPA1), which abundantly expressed in enterochromaffin cells (ECC), has been reported to exert apparently contradictory results in in vitro contractility and in vivo gastrointestinal (GI) transit evaluations. The pharmaceutical-grade Japanese traditional medicine daikenchuto (TU-100) has been reported to be beneficial for postoperative ileus (POI) and accelerate GI transit in animals and humans. TU-100 was recently shown to increase intestinal blood flow via stimulation of TRPA1 in the epithelial cells of the small intestine (SI). METHODS The effects of various TRPA1 agonists on motility were examined in a manipulation-induced murine POI model, in vitro culture of SI segments and an ECC model cell line, RIN-14B. KEY RESULTS Orally administered TRPA1 agonists, aryl isothiocyanate (AITC) and cinnamaldehyde (CA), TU-100 ingredients, [6]-shogaol (6S) and γ-sanshool (GS), improved SI transit in a POI model. The effects of AITC, 6S and GS but not CA were abrogated in TRPA1-deficient mice. SI segments show periodic peristaltic motor activity whose periodicity disappeared in TRPA1-deficient mice. TU-100 augmented the motility. AITC, CA and 6S increased 5-HT release from isolated SI segments and the effects of all these compounds except for CA were lost in TRPA1-deficient mice. 6S and GS induced a release of 5-HT from RIN-14B cells in a dose- and TRPA1-dependent manner. CONCLUSIONS & INFERENCES Intraluminal TRPA1 stimulation is a potential therapeutic strategy for GI motility disorders. Further investigation is required to determine whether 5-HT and/or ECC are involved in the effect of TRPA1 on motility.
Collapse
Affiliation(s)
- K Tsuchiya
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Kubota
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - A Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - N Ohno
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - A Mase
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - H Matsushima
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - M Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Y Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - T Kono
- Laboratory of Pathophysiology & Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
11
|
Yada K, Ishibashi H, Mori H, Morine Y, Zhu C, Feng R, Kono T, Shimada M. The Kampo medicine "Daikenchuto (TU-100)" prevents bacterial translocation and hepatic fibrosis in a rat model of biliary atresia. Surgery 2016; 159:1600-1611. [PMID: 26994485 DOI: 10.1016/j.surg.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 01/03/2016] [Accepted: 02/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biliary atresia is the most common cause of end-stage liver disease in children. It is known that bile duct ligation contributes to liver fibrosis via bacterial translocation (BT) and toll-like receptor 4 (TLR4) signaling of hepatic stellate cells (HSCs). We have reported previously that the traditional Japanese medicine, "Dai-kenchu-to (TU-100)," a form of "Kampo medicine" prevents BT in rats exposed to the stress of fasting. The aim of this study was to clarify the effect of TU-100 on a rat model of biliary atresia using bile duct ligation. METHODS Bile duct ligation and subsequent daily oral administration of TU-100 was performed in 6-week-old rats. The rats were killed at 3, 7, or 14 days after bile duct ligation to evaluate the liver injury, occurrence of BT, and hepatic fibrosis. As an in vitro experiment, we isolated fresh HSCs from the rats undergoing bile duct ligation. After cell attachment, TU-100 and its 3 component herbs (eg, processed ginger, ginseng radix, and Japanese pepper) were added, and the expressions of Alpha actin2 (acta2), Alpha-1 type I collagen (colIa1), and tissue inhibitor of metalloproteinase 1 (timp1) were analyzed. RESULTS In vivo experiments demonstrated that oral administration of TU-100 decreased liver injury and atrophy of intestinal mucosa BT, hepatic fibrosis, and hepatic expression of alpha smooth muscle actin (αSMA) and TLR4, compared with rats that underwent bile duct ligation only. In vitro experiments showed that administration of TU-100 or the component herbs inhibited the expressions of acta2, colIa1, and timp1 in the HSCs. CONCLUSION TU-100 prevented BT, activation of HSCs, and subsequent hepatic fibrosis. TU-100 may prevent progression of hepatic fibrosis in children with biliary atresia and improve prognosis.
Collapse
Affiliation(s)
- Keigo Yada
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan; Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima, Japan.
| | - Hiroki Ishibashi
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan
| | - Hiroki Mori
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan
| | - Chengzhan Zhu
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan; Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima, Japan
| | - Rui Feng
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Hokkaido, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
12
|
Hasebe T, Ueno N, Musch MW, Nadimpalli A, Kaneko A, Kaifuchi N, Watanabe J, Yamamoto M, Kono T, Inaba Y, Fujiya M, Kohgo Y, Chang EB. Daikenchuto (TU-100) shapes gut microbiota architecture and increases the production of ginsenoside metabolite compound K. Pharmacol Res Perspect 2016; 4:e00215. [PMID: 26977303 PMCID: PMC4777267 DOI: 10.1002/prp2.215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
Many pharmaceutical agents not only require microbial metabolism for increased bioavailability and bioactivity, but also have direct effects on gut microbial assemblage and function. We examined the possibility that these actions are not mutually exclusive and may be mutually reinforcing in ways that enhance long‐term of these agents. Daikenchuto, TU‐100, is a traditional Japanese medicine containing ginseng. Conversion of the ginsenoside Rb1 (Rb1) to bioactive compound K (CK) requires bacterial metabolism. Diet‐incorporated TU‐100 was administered to mice over a period of several weeks. T‐RFLP and 454 pyrosequencing were performed to analyze the time‐dependent effects on fecal microbial membership. Fecal microbial capacity to metabolize Rb1 to CK was measured by adding TU‐100 or ginseng to stool samples to assess the generation of bioactive metabolites. Levels of metabolized TU‐100 components in plasma and in stool samples were measured by LC‐MS/MS. Cecal and stool short‐chain fatty acids were measured by GC‐MS. Dietary administration of TU‐100 for 28 days altered the gut microbiota, increasing several bacteria genera including members of Clostridia and Lactococcus lactis. Progressive capacity of microbiota to convert Rb1 to CK was observed over the 28 days administration of dietary TU‐100. Concomitantly with these changes, increases in all SCFA were observed in cecal contents and in acetate and butyrate content of the stool. Chronic consumption of dietary TU‐100 promotes changes in gut microbiota enhancing metabolic capacity of TU‐100 and increased bioavailability. We believe these findings have broad implications in optimizing the efficacy of natural compounds that depend on microbial bioconversion in general.
Collapse
Affiliation(s)
- Takumu Hasebe
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois; Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Nobuhiro Ueno
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois; Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Mark W Musch
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois
| | - Anuradha Nadimpalli
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois
| | - Atsushi Kaneko
- Tsumura Research Laboratories Tsumura & Co., Ami Ibaraki Japan
| | - Noriko Kaifuchi
- Tsumura Research Laboratories Tsumura & Co., Ami Ibaraki Japan
| | - Junko Watanabe
- Tsumura Research Laboratories Tsumura & Co., Ami Ibaraki Japan
| | | | - Toru Kono
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Hokkaido Japan; Center for Clinical and Biomedical Research Sapporo Higashi Tokushukai Hospital Sapporo Hokkaido Japan
| | - Yuhei Inaba
- Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Eugene B Chang
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois
| |
Collapse
|
13
|
Matsushita A, Fujita T, Ohtsubo S, Kumamoto E. Traditional Japanese medicines inhibit compound action potentials in the frog sciatic nerve. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:272-80. [PMID: 26707752 DOI: 10.1016/j.jep.2015.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Japanese (Kampo) medicines have a variety of clinical effects including pain alleviation, but evidence for a mechanism for their pain relief has not yet been elucidated fully. Considering that Kampo medicine contains many plant-derived chemicals having an ability to inhibit nerve action potential conduction, it is possible that this medicine inhibits nerve conduction. The purpose of the present study was to know how various Kampo medicines affect nerve conduction. MATERIALS AND METHODS We examined the effects of Kampo and crude medicines on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. RESULTS Daikenchuto, rikkosan, kikyoto, rikkunshito, shakuyakukanzoto and kakkonto concentration-dependently reduced the peak amplitude of the CAP. Among the Kampo medicines, daikenchuto was the most effective in inhibiting CAPs. Daikenchuto is composed of three kinds of crude medicine, Japanese pepper, processed ginger and ginseng radix. When the crude medicines were tested, Japanese pepper and processed ginger reduced CAP peak amplitudes, while ginseng radix hardly affected CAPs. Moreover, there was an interaction between the Japanese pepper and processed ginger activities in such that one medicine at low but not high concentrations increased the extent of the inhibition by the other one that was co-applied. CONCLUSIONS Kampo medicines have an ability to inhibit nerve conduction. This action of daikenchuto is due to Japanese pepper and processed ginger but not ginseng radix, probably through an interaction between Japanese pepper and processed ginger in a manner dependent on their concentrations. Nerve conduction inhibition could contribute to at least a part of Kampo medicine's clinical effects such as pain alleviation.
Collapse
Affiliation(s)
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan.
| | - Sena Ohtsubo
- Department of Physiology, Saga Medical School, Saga, Japan.
| | | |
Collapse
|
14
|
Mosińska P, Salaga M, Fichna J. Novel investigational drugs for constipation-predominant irritable bowel syndrome: a review. Expert Opin Investig Drugs 2016; 25:275-86. [PMID: 26765585 DOI: 10.1517/13543784.2016.1142532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Constipation-predominant irritable bowel syndrome (IBS-C) is a functional gastrointestinal (GI) disorder with an unknown etiology. A number of the drugs tested for IBS-C have also been applied to chronic constipation and chronic idiopathic constipation. Unfortunately, due to severe adverse effects, many drugs envisioned for IBS-C had been withdrawn from the market. Nevertheless, a number of potential new agents for this indication are now under development. AREAS COVERED The following review describes the most recently developed agents in preclinical as well as Phase 1 and Phase 2 clinical studies. Information was obtained from published literature, abstracts and the latest results found in Clinicaltrial.gov database. The authors put a special interest on glucagon-like peptide 1 analogue, bile acid modulators, serotonergic agents, guanylate cyclase C and cannabinoid antagonists. EXPERT OPINION To enter the market, a newly-developed drug has to meet several criteria, such as good bioavailability or the absence of drug-related adverse events. Taking into account constipation and abdominal pain as the main symptoms in IBS-C, a novel successful drug is usually able to improve both at the same time. Four out of fifteen investigational drugs described in this paper belong to the serotonergic family and have a good prognosis to reach the market; still, more long-term clinical studies are warranted.
Collapse
Affiliation(s)
- Paula Mosińska
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Maciej Salaga
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Jakub Fichna
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
15
|
Kono T, Shimada M, Yamamoto M, Kaneko A, Oomiya Y, Kubota K, Kase Y, Lee K, Uezono Y. Complementary and synergistic therapeutic effects of compounds found in Kampo medicine: analysis of daikenchuto. Front Pharmacol 2015; 6:159. [PMID: 26300774 PMCID: PMC4523940 DOI: 10.3389/fphar.2015.00159] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023] Open
Abstract
Herbal medicines have been used in Japan for more than 1500 years and traditional Japanese medicines (Kampo medicines) are now fully integrated into the modern healthcare system. In total, 148 Kampo formulae are officially approved as prescription drugs and covered by the national health insurance system in Japan. However, despite their long track record of clinical use, the multi-targeted, multi-component properties of Kampo medicines, which are fundamentally different from Western medicines, have made it difficult to create a suitable framework for conducting well-designed, large-scale clinical trials. In turn, this has led to misconceptions among western trained physicians concerning the paucity of scientific evidence for the beneficial effects of Kampo medicines. Fortunately, there has been a recent surge in scientifically robust data from basic and clinical studies for some of the Kampo medicines, e.g., daikenchuto (TU-100). Numerous basic and clinical studies on TU-100, including placebo-controlled double-blind studies for various gastrointestinal disorders, and absorption, distribution, metabolism and excretion (ADME) studies, have been conducted or are in the process of being conducted in both Japan and the USA. Clinical studies suggest that TU-100 is beneficial for postoperative complications, especially ileus and abdominal bloating. ADME and basic studies indicate that the effect of TU-100 is a composite of numerous actions mediated by multiple compounds supplied via multiple routes. In addition to known mechanisms of action via enteric/sensory nerve stimulation, novel mechanisms via the TRPA1 channel and two pore domain potassium channels have recently been elucidated. TU-100 compounds target these channels with and without absorption, both before and after metabolic activation by enteric flora, with different timings and possibly with synergism.
Collapse
Affiliation(s)
- Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital Sapporo, Hokkaido, Japan ; Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University Sapporo, Japan ; Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, Tokushima University Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, Tokushima University Tokushima, Japan
| | - Masahiro Yamamoto
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Atushi Kaneko
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Yuji Oomiya
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Kunitsugu Kubota
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Yoshio Kase
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Keiko Lee
- Kampo Scientific Strategies Division, International Pharmaceutical Development Department, Tsumura & CO. Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute Tokyo, Japan
| |
Collapse
|