1
|
Widjaja SS, Ichwan M, Chowbay B, Rusdiana, Mardani TH, Jayalie VF. Gene polymorphism impact on opioid analgesic usage. J Adv Pharm Technol Res 2024; 15:135-138. [PMID: 39290537 PMCID: PMC11404436 DOI: 10.4103/japtr.japtr_69_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Acute pain, moderate-to-severe cancer pain, and persistent malignant pain are all frequently treated with opioids. It is regarded as one of the main tenets of analgesic treatment. The relationship between human opioid sensitivity and genetic polymorphism differences has received little attention up to this point in research. Nonetheless, there is mounting proof that pharmacogenomic diversity could affect how each person reacts to opioids. Finding out how gene polymorphism affects analgesic use is the aim of this investigation, particularly opioids. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards were followed in the preparation of the systematic review approach used in this work. Oxycodone, fentanyl, raclopride, tramadol, ketorolac, morphine, ropivacaine, levobupivacaine, subfentanyl, remifentanil, and nortriptyline were the opioid medications used in the study, which was based on 13 publications. From those articles, we reviewed the impact of gene polymorphism on pain management and drug pharmacokinetics. Based on this systematic review, we concluded that gene polymorphism of gene affects analgesic, specifically opioid mechanisms.
Collapse
Affiliation(s)
- Sry Suryani Widjaja
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Rusdiana
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Tengku Helvi Mardani
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
2
|
Nižnanský Ľ, Mikuláš Ľ, Szabó AH, Nižnanská Ž, Valuch J. Unusual concentration of tramadol detected in cadaver in the last stage of decomposition and in fly larvae in the immediate vicinity: case report and literature review. Forensic Sci Med Pathol 2024; 20:183-188. [PMID: 36892807 DOI: 10.1007/s12024-023-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
Determination of the manner and cause of death from skeletal remains is almost always very difficult and can be a challenge for medical examiners. At the end also on skeletal remains, it is possible to assess mechanical, chemical, and thermal injuries, although it can be usually impossible. Possibilities to analyze biological material for the presence of drugs are also limited. The present study describes a case of a homeless man's skeletal remains on which a large number of fly larvae were found. Unusually high concentration of tramadol (TML) in the bone marrow (BM) = 4530 ng/g, muscle (M) = 4020 ng/g, and fly larvae (FL) = 280 ng/g was detected using a validated GC/MS method. In all analyzed samples, caffeine and N-desmethyltramadol (except BM) were qualitatively determined. Autopsy findings and toxicological analyses of the BM suggested that the cause of death could probably be intoxication by TML. It is apparent from the reviewed literature that analysis of TML in the late stages of decomposition of human body is rarely performed. Literature is predominantly focused on animal studies. Thus, TML concentrations analyzed in BM, M, or FL could be found helpful in relation to evaluation of intoxication by this substance. However, the significance of the results obtained in the presented study should be confirmed by further analyses of BM, M, or FL, where TML would be proved in lethal concentration in the blood.
Collapse
Affiliation(s)
- Ľuboš Nižnanský
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81108, Bratislava, Slovakia
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107, Bratislava, Slovakia
| | - Ľubomír Mikuláš
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107, Bratislava, Slovakia
| | - Alexandra Hengerics Szabó
- Faculty of Education, Department of Chemistry, J. Selye University, Bratislavská cesta 3322, 94501, Komárno, Slovakia
| | - Žofia Nižnanská
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81108, Bratislava, Slovakia.
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107, Bratislava, Slovakia.
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Jozef Valuch
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107, Bratislava, Slovakia
| |
Collapse
|
3
|
Casajús A, Zubiaur P, Alday E, Soria‐Chacartegui P, Saiz‐Rodríguez M, Gutierrez L, Aragonés C, Campodónico D, Gómez‐Fernández A, Navares‐Gómez M, Villapalos‐García G, Mejía‐Abril G, Ochoa D, Abad‐Santos F. Impact of CYP2D6 and CYP2B6 phenotypes on the response to tramadol in patients with acute post-surgical pain. Clin Transl Sci 2024; 17:e13698. [PMID: 38140786 PMCID: PMC10787143 DOI: 10.1111/cts.13698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Tramadol is an important minor opioid prescribed for pain management. In this study, we analyzed the well-known impact of CYP2D6 genetic variation and 60 additional variants in eight candidate genes (i.e., ABCG2, SLCO1B1, CYP2D6, CYP2B6, CYP2C19, CYP2C9, CYP3A5, and CYP3A4) on tramadol efficacy and safety. Some 108 patients with pain after surgery admitted to a post-anesthesia care unit (PACU) and prescribed tramadol were recruited. They were genotyped, and tramadol M1/M2 metabolite concentrations were determined by a newly validated HPLC-MS/MS method. CYP2D6 intermediate (IM) and poor (PM) metabolizers showed lower M1 concentrations adjusted for dose/weight at 30 and 120 min compared to ultrarapid (UM) and normal (NM) metabolizers (univariate p < 0.001 and 0.020, multivariate p < 0.001 and 0.001, unstandardized β coefficients = 0.386 and 0.346, R2 = 0.146 and 0.120, respectively). CYP2B6 PMs (n = 10) were significantly related to a higher reduction in pain 30 min after tramadol intake (univariate p = 0.038, multivariate p = 0.016, unstandardized β coefficient = 0.224, R2 = 0.178), to lower PACU admission time (p = 0.007), and to lower incidence of adverse drug reactions (p = 0.038) compared to the other phenotypes. CYP3A4 IMs and PMs showed a higher prevalence of drowsiness and dizziness (p = 0.028 and 0.005, respectively). Our results suggest that the interaction of CYP2B6 and CYP2D6 phenotypes may be clinically relevant, pending validation of these results in large, independent cohorts. Additional research is required to clarify the impact of CYP3A4 genetic variation on tramadol response.
Collapse
Affiliation(s)
- Ana Casajús
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Pablo Zubiaur
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Enrique Alday
- Anesthesia and Surgical Critical Care DepartmentHospital Universitario de la PrincesaMadridSpain
| | - Paula Soria‐Chacartegui
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Miriam Saiz‐Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS)Hospital Universitario de BurgosBurgosSpain
- Department of Health SciencesUniversity of BurgosBurgosSpain
| | - Lara Gutierrez
- Anesthesia and Surgical Critical Care DepartmentHospital Universitario de MóstolesMadridSpain
| | - Catalina Aragonés
- Anesthesia and Surgical Critical Care DepartmentHospital Universitario de la PrincesaMadridSpain
| | - Diana Campodónico
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Antía Gómez‐Fernández
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Marcos Navares‐Gómez
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Gonzalo Villapalos‐García
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Gina Mejía‐Abril
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Dolores Ochoa
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Francisco Abad‐Santos
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
4
|
Aly SM, Hakim F, Richeval C, Hennart B, Gaulier JM, Allorge D. Metabolic ratios and SNPs implicated in tramadol-related deaths. Int J Legal Med 2023; 137:1431-1437. [PMID: 37460702 DOI: 10.1007/s00414-023-03052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
Tramadol (TR) metabolism is performed by polymorphic enzymes that are influenced by genetic polymorphisms. Within this scope, the study presented here aimed to describe 41 genetic variants within CYP2D6, CYP2B6, and CYP3A4 genes in 48 cases of TR-related death that may be involved in the response to TR and to assess whether there is a correlation between these genetic variants and metabolic ratios (MRs). Blood samples from 48 victims of a TR-related death were analyzed to determine the concentrations of TR and its metabolites [O-desmethyltramadol (M1) & N-desmethyltramadol (M2)] using a LC-MS/MS method. All the samples were also genotyped for 41 common CYP2D6, CYP2B6, and CYP3A4 single nucleotide polymorphisms (SNPs) using the HaloPlex Target Enrichment system. Cases with the T/- genotype (rs35742686 in CYP2D6) had significantly higher M2/M1 ratio than cases with T/T genotype and cases with the G/A genotype (rs35599367 in CYP3A4) had significantly higher MR2 (TR/M2) ratio than cases with G/G genotype. The frequency of tested SNPs which belong to CYP2D6, CYP2B6, and CYP3A4 revealed the over-presentation of 2 SNPs (rs1058172 in CYP2D6 and rs4803419 in CYP2B6) in TR overdose group, which could have toxicological implications. These results indicate these polymorphisms in CYP2D6, CYP2B6, and CYP3A4 might influence the function and could increase the risk of toxicity. However, these findings should be supported in future studies with larger groups of cases.
Collapse
Affiliation(s)
- Sanaa M Aly
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
- CHU Lille, Service de Toxicologie-Génopathies, Lille, 59037, France.
| | - Florian Hakim
- CHU Lille, Service de Toxicologie-Génopathies, Lille, 59037, France
- University of Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Lille, 59000, France
| | - Camille Richeval
- CHU Lille, Service de Toxicologie-Génopathies, Lille, 59037, France
- University of Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Lille, 59000, France
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie-Génopathies, Lille, 59037, France
- University of Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Lille, 59000, France
| | - Jean-Michel Gaulier
- CHU Lille, Service de Toxicologie-Génopathies, Lille, 59037, France
- University of Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Lille, 59000, France
| | - Delphine Allorge
- CHU Lille, Service de Toxicologie-Génopathies, Lille, 59037, France
- University of Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, Lille, 59000, France
| |
Collapse
|
5
|
Agulló L, Aguado I, Muriel J, Margarit C, Gómez A, Escorial M, Sánchez A, Fernández A, Peiró AM. Pharmacogenetic Guided Opioid Therapy Improves Chronic Pain Outcomes and Comorbid Mental Health: A Randomized, Double-Blind, Controlled Study. Int J Mol Sci 2023; 24:10754. [PMID: 37445931 DOI: 10.3390/ijms241310754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Interindividual variability in analgesic response is at least partly due to well-characterized polymorphisms that are associated with opioid dosing and adverse outcomes. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has put forward recommendations for the CYP2D6 phenotype, but the list of studied drug-gene pairs continues to grow. This clinical trial randomized chronic pain patients (n = 60), referred from primary care to pain unit care into two opioid prescribing arms, one guided by CYP2D6, μ-opioid receptor (OPRM1), and catechol-O-methyl transferase (COMT) genotypes vs. one with clinical routine. The genotype-guided treatment reduced pain intensity (76 vs. 59 mm, p < 0.01) by improving pain relief (28 vs. 48 mm, p < 0.05), increased quality of life (43 vs. 56 mm p < 0.001), and lowered the incidence of clinically relevant adverse events (3 [1-5] vs. 1 [0-2], p < 0.01) and 42% opioid dose (35 [22-61] vs. 60 [40-80] mg/day, p < 0.05) as opposed to usual prescribing arm. The final health utility score was significantly higher (0.71 [0.58-0.82] vs. 0.51 [0.13-0.67] controls, p < 0.05) by improving sleepiness and depression comorbidity, with a significant reduction of 30-34% for headache, dry mouth, nervousness, and constipation. A large-scale implementation analysis could help clinical translation, together with a pharmaco-economic evaluation.
Collapse
Affiliation(s)
- Laura Agulló
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Isidro Aguado
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Javier Muriel
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - César Margarit
- Pain Unit, Department of Health of Alicante, General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Alba Gómez
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Mónica Escorial
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Astrid Sánchez
- San Vicente del Raspeig II Health Center, c/Alicante, 78, Sant Vicent del Raspeig, 03690 Alicante, Spain
| | - Alicia Fernández
- San Vicente del Raspeig II Health Center, c/Alicante, 78, Sant Vicent del Raspeig, 03690 Alicante, Spain
| | - Ana M Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
6
|
Nahid NA, Johnson JA. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine. Expert Opin Drug Metab Toxicol 2022; 18:769-785. [PMID: 36597259 PMCID: PMC9891304 DOI: 10.1080/17425255.2022.2160317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION CYP2D6 contributes to the metabolism of approximately 20-25% of drugs. However, CYP2D6 is highly polymorphic and different alleles can lead to impacts ranging from null to increase in activity. Moreover, there are commonly used drugs that potently inhibit the CYP2D6, thus causing 'phenoconversion' which can convert the genotypic normal metabolizer into phenotypic poor metabolizer. Despite growing literature on the clinical implications of non-normal CYP2D6 genotype and phenoconversion on patient-related outcomes, implementation of CYP2D6 pharmacogenetics and phenoconversion to guide prescribing is rare. This review focuses on providing the clinical importance of CYP2D6 pharmacogenetics and phenoconversion in precision medicine and summarizes the challenges and approaches to implement these into clinical practice. AREAS COVERED A literature search was performed using PubMed and clinical studies documenting the effects of CYP2D6 genotypes and/or CYP2D6 inhibitors on pharmacokinetics, pharmacodynamics or treatment outcomes of CYP2D6-metabolized drugs, and studies on implementation challenges and approaches. EXPERT OPINION Considering the extent and impact of genetic polymorphisms of CYP2D6, phenoconversion by the comedications, and contribution of CYP2D6 in drug metabolism, CYP2D6 pharmacogenetics is essential to ensure drug safety and efficacy. Utilization of proper guidelines incorporating both CYP2D6 pharmacogenetics and phenoconversion in clinical care assists in optimizing drug therapy.
Collapse
Affiliation(s)
- Noor A. Nahid
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
- Division of Cardiovascular Medicine, University of Florida College of Medicine, FL, USA
| |
Collapse
|
7
|
Ballester P, Muriel J, Peiró AM. CYP2D6 phenotypes and opioid metabolism: the path to personalized analgesia. Expert Opin Drug Metab Toxicol 2022; 18:261-275. [PMID: 35649041 DOI: 10.1080/17425255.2022.2085552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Opioids play a fundamental role in chronic pain, especially considering when 1 of 5 Europeans adults, even more in older females, suffer from it. However, half of them do not reach an adequate pain relief. Could pharmacogenomics help to choose the most appropriate analgesic drug? AREAS COVERED The objective of the present narrative review was to assess the influence of cytochrome P450 2D6 (CYP2D6) phenotypes on pain relief, analgesic tolerability, and potential opioid misuse. Until December 2021, a literature search was conducted through the MEDLINE, PubMed database, including papers from the last 10 years. CYP2D6 plays a major role in metabolism that directly impacts on opioid (tramadol, codeine, or oxycodone) concentration with differences between sexes, with a female trend toward poorer pain control. In fact, CYP2D6 gene variants are the most actionable to be translated into clinical practice according to regulatory drug agencies and international guidelines. EXPERT OPINION CYP2D6 genotype can influence opioids' pharmacokinetics, effectiveness, side effects, and average opioid dose. This knowledge needs to be incorporated in pain management. Environmental factors, psychological together with genetic factors, under a sex perspective, must be considered when you are selecting the most personalized pain therapy for your patients.
Collapse
Affiliation(s)
- Pura Ballester
- Neuropharmacology on Pain (NED) group, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| | - Javier Muriel
- Neuropharmacology on Pain (NED) group, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| | - Ana M Peiró
- Neuropharmacology on Pain (NED) group, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain.,Clinical Pharmacology Unit, Department of Health of Alicante, General Hospital, Alicante, Spain
| |
Collapse
|
8
|
Sachtleben EP, Rooney K, Haddad H, Lassiegne VL, Boudreaux M, Cornett EM, Kaye AD. The Role of Pharmacogenomics in Postoperative Pain Management. Methods Mol Biol 2022; 2547:505-526. [PMID: 36068475 DOI: 10.1007/978-1-0716-2573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pharmacogenomics can improve pain management by considering individual variations in pain perception and susceptibility and sensitivity to medicines related to genetic diversity. Due to the subjective nature of pain and the fact that people respond differently to medicines, it can be challenging to develop a consistent and successful regimen for pain disorders. Numerous factors influence the outcome of pain treatment programs, but two stand out: altered perception of pain and varying responsiveness to analgesic medicines. Numerous polymorphisms in genes such as CYP2D6, OPRM1, and ABCB1 have been identified, culminating in a heterogeneous response to pain medication in people who have these genetic polymorphisms. Improved treatment regimens that factor in pharmacogenetic differences in patients would help reduce the risk of opioid dependency and help effectively treat postoperative pain.
Collapse
Affiliation(s)
| | | | - Hannah Haddad
- Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | | | - Megan Boudreaux
- School of Medicine, Louisiana State University Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA.
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
9
|
Aly SM, Tartar O, Sabaouni N, Hennart B, Gaulier JM, Allorge D. Tramadol-Related Deaths: Genetic Analysis in Relation to Metabolic Ratios. J Anal Toxicol 2021; 46:791-796. [PMID: 34480795 DOI: 10.1093/jat/bkab096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
Tramadol (TR) metabolism is mainly dependent on the enzymatic activity of CYP2D6, which is controlled by genetic polymorphisms. Individuals are classified as poor (PMs), intermediate (IMs), extensive (EMs) or ultrarapid metabolizers (UMs) according to their genotype or phenotype. The determination of the metabolic phenotype for CYP2D6 can be of utmost importance in forensic and clinical contexts that involve TR intake. The present study aimed to describe CYP2D6 genetic variants in cases of TR-related deaths and to assess which metabolic ratio(s) (MRs) would allow to determine CYP2D6 phenotype without having to perform genetic analyses. Forty-eight postmortem blood samples were selected from TR-related death cases previously analyzed in a forensic context in North of France between 2013 and 2019. Initial available data included blood concentrations of TR and its two main metabolites (M1& M2) determined using a LC-MS/MS method. TR metabolism was expressed as various MRs comprising TR/M1, TR/M2 and M2/M1. After DNA extraction, sequencing was used for genetic variant detections that affect CYP2D6 activity/expression. In the present study, the allelic variants with the higher frequency were CYP2D6*1 (68%), followed by *4 (21%). The most frequent phenotype is EMs (59.6%), followed by IMs (23.4%), PMs (12.8%), and UMs (6.4%). There was no significant correlation between each calculated MR and the genotypically-predicted phenotypes, except for M2/M1 which appears related to the PM phenotype. The observed distribution of CYP2D6 genetic variants in this TR-related death population was similar to that found in the general Caucasian population. The present study displayed that the blood M2/M1 ratio could be the best-correlated tramadol MR to the PM phenotype, and could thus be used in forensic contexts where genetic analyses are not possible or poorly informative. For the other phenotypes, especially the UM phenotype, genetic analysis appears to be the only reliable method to predict the CYP2D6 phenotype.
Collapse
Affiliation(s)
- Sanaa M Aly
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,CHU Lille, Service de Toxicologie-Génopathies, UF de Toxicologie, F-59000, Lille, France
| | - Océane Tartar
- CHU Lille, Service de Toxicologie-Génopathies, UF de Toxicologie, F-59000, Lille, France
| | - Naoual Sabaouni
- CHU Lille, Service de Toxicologie-Génopathies, UF de Pharmacogénétique, Lille, France
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie-Génopathies, UF de Toxicologie, F-59000, Lille, France
| | - Jean-Michel Gaulier
- CHU Lille, Service de Toxicologie-Génopathies, UF de Toxicologie, F-59000, Lille, France.,ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Lille, France
| | - Delphine Allorge
- CHU Lille, Service de Toxicologie-Génopathies, UF de Toxicologie, F-59000, Lille, France.,ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Lille, France
| |
Collapse
|
10
|
Neskovic N, Mandic D, Marczi S, Skiljic S, Kristek G, Vinkovic H, Mraovic B, Debeljak Z, Kvolik S. Different Pharmacokinetics of Tramadol, O-Demethyltramadol and N-Demethyltramadol in Postoperative Surgical Patients From Those Observed in Medical Patients. Front Pharmacol 2021; 12:656748. [PMID: 33935773 PMCID: PMC8082457 DOI: 10.3389/fphar.2021.656748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Most studies examining tramadol metabolism have been carried out in non-surgical patients and with oral tramadol. The aim of this study was 1) to measure concentrations of tramadol, O-demethyltramadol (ODT), and N-demethyltramadol (NDT) in the surgical patients admitted to the intensive care unit (ICU) within the first 24 postoperative hours after intravenous application of tramadol, and 2) to examine the effect of systemic inflammation on tramadol metabolism and postoperative pain. Methods: A prospective observational study was carried out in the surgical ICU in the tertiary hospital. In the group of 47 subsequent patients undergoing major abdominal surgery, pre-operative blood samples were taken for CYP2D6 polymorphism analysis. Systemic inflammation was assessed based on laboratory and clinical indicators. All patients received 100 mg of tramadol intravenously every 6 h during the first postoperative day. Postoperative pain was assessed before and 30 min after tramadol injections. Tramadol, ODT, and NDT concentrations were determined by high-performance liquid chromatography. Results: CYP2D6 analysis revealed 2 poor (PM), 22 intermediate (IM), 22 extensive (EM), and 1 ultrafast metabolizer. After a dose of 100 mg of tramadol, t1/2 of 4.8 (3.2-7.6) h was observed. There were no differences in tramadol concentration among metabolic phenotypes. The area under the concentration-time curve at the first dose interval (AUC1-6) of tramadol was 1,200 (917.9-1944.4) μg ×h ×L-1. NDT concentrations in UM were below the limit of quantification until the second dose of tramadol was administrated, while PM had higher NDT concentrations compared to EM and IM. ODT concentrations were higher in EM, compared to IM and PM. ODT AUC1-6 was 229.6 (137.7-326.2) μg ×h ×L-1 and 95.5 (49.1-204.3) μg ×h ×L-1 in EM and IM, respectively (p = 0.004). Preoperative cholinesterase activity (ChE) of ≤4244 U L-1 was a cut-off value for a prediction of systemic inflammation in an early postoperative period. NDT AUC1-6 were significantly higher in patients with low ChE compared with normal ChE patients (p = 0.006). Pain measurements have confirmed that sufficient pain control was achieved in all patients after the second tramadol dose, except in the PM. Conclusions: CYP2D6 polymorphism is a major factor in O-demethylation, while systemic inflammation accompanied by low ChE has an important role in the N-demethylation of tramadol in postoperative patients. Concentrations of tramadol, ODT, and NDT are lower in surgical patients than previously reported in non-surgical patients. Clinical Trial Registration: ClinicalTrials.gov, NCT04004481.
Collapse
Affiliation(s)
- Nenad Neskovic
- Department of Anesthesiology, Resuscitation and ICU, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
| | - Dario Mandic
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
- Department of Clinical and Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Saska Marczi
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
- Laboratory for Molecular and HLA Diagnostic, Department of Transfusion Medicine, Osijek University Hospital, Osijek, Croatia
| | - Sonja Skiljic
- Department of Anesthesiology, Resuscitation and ICU, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
| | - Gordana Kristek
- Department of Anesthesiology, Resuscitation and ICU, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
| | - Hrvoje Vinkovic
- Department of Anesthesiology, Resuscitation and ICU, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
| | - Boris Mraovic
- University of Missouri, Department of Anesthesiology and Perioperative Medicine, School of Medicine, Columbia, MO, United States
| | - Zeljko Debeljak
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
- Department of Clinical and Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Slavica Kvolik
- Department of Anesthesiology, Resuscitation and ICU, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer, Osijek, Croatia
| |
Collapse
|
11
|
Recent advances in chiral analysis for biosamples in clinical research and forensic toxicology. Bioanalysis 2021; 13:493-511. [PMID: 33719527 DOI: 10.4155/bio-2020-0330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This article covers current methods and applications in chiral analysis from 2010 to 2020 for biosamples in clinical research and forensic toxicology. Sample preparation for aqueous and solid biological samples prior to instrumental analysis were discussed in the article. GC, HPLC, capillary electrophoresis and sub/supercritical fluid chromatography provide the efficient tools for chiral drug analysis coupled to fluorescence, UV and MS detectors. The application of chiral analysis is discussed in the article, which involves differentiation between clinical use and drug abuse, pharmacokinetic studies, pharmacology/toxicology evaluations and chiral inversion. Typical chiral analytes, including amphetamines and their analogs, anesthetics, psychotropic drugs, β-blockers and some other chiral compounds, are also reviewed.
Collapse
|
12
|
Suzuki K, Naito T, Tanaka H, Shibata K, Yamada Y, Itoh K, Kawakami J. Impact of CYP2D6 activity and cachexia progression on enantiomeric alteration of plasma tramadol and its demethylated metabolites and their relationships with central nervous system symptoms in head and neck cancer patients. Basic Clin Pharmacol Toxicol 2020; 128:472-481. [PMID: 33131142 DOI: 10.1111/bcpt.13528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022]
Abstract
This study aimed to evaluate the influence of CYP2D6 activity and cachexia progression on the enantiomeric alteration of plasma tramadol and its demethylated metabolites in head and neck cancer patients. Fifty-three head and neck cancer patients receiving oral tramadol were enrolled. The plasma concentrations of tramadol, O-desmethyltramadol (ODT) and N-desmethyltramadol (NDT) enantiomers were determined. The CYP2D6 activity score (AS) and degree of cachexia progression were assessed according to genotype and the Glasgow Prognostic Score (GPS), respectively. The enantiomeric ratio of NDT was (+)-form dominant in all patients. CYP2D6 AS had negative correlations with the plasma concentrations of (+)-NDT and (-)-NDT. The plasma concentrations of (+)-tramadol and (+)-ODT were higher in patients with GPS 1 or 2 than in those with GPS 0. Lower metabolic ratios to NDT enantiomers were observed in patients with GPS 1 or 2. In patients with GPS 1 or 2, the plasma (-)-tramadol was associated with the incidence of central nervous system symptoms. In conclusion, CYP2D6 AS partially explained the contribution of CYP2D6 activity to plasma tramadol and its demethylated metabolite enantiomers. Additionally, cachexia progression elevated the plasma (+)-tramadol and (+)-ODT levels through the reduction of N-demethylation of (+)-tramadol.
Collapse
Affiliation(s)
- Koji Suzuki
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironari Tanaka
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaito Shibata
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuhide Yamada
- Department of Clinical Oncology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Stump T, Cather J, Moore PS. The effects of cytochrome P450 2D6 inhibitors on a high-dose tramadol taper for medically supervised opioid withdrawal: a retrospective chart review. J Addict Dis 2020; 39:81-87. [PMID: 32921297 DOI: 10.1080/10550887.2020.1818912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Tramadol is used off-label for medically supervised opioid withdrawal. Tramadol is metabolized by CYP2D6 to an active metabolite with significantly more pharmacologic activity compared to the parent compound.Objectives: The objective of this study is to evaluate the effects of CYP2D6 inhibitors on patient response to a tramadol taper for medically supervised opioid withdrawal.Methods: A retrospective chart review of patients who received a tramadol taper for medically supervised opioid withdrawal was conducted comparing patients who received concomitant moderate-to-strong CYP2D6 inhibitors to patients without concomitant therapy. The primary outcome was the change in Clinical Institute Narcotic Assessment (CINA) scores from baseline to discharge. Secondary outcomes included area under the curve of CINA scores over time, additional CINA outcomes, length of stay, and readmissions.Results: Of 100 charts reviewed, 30 patients received a concomitant moderate-to-strong CYP2D6 inhibitor. There were no statistically significant differences between the baseline demographics of the two groups. Change from baseline CINA to discharge did not differ significantly between the Non-2D6 group and the 2D6 group (-4.0 ± 3.83 and -4.5 ± 4.48 respectively; p = 0.606). The average CINA score for nausea and vomiting was significantly higher in the Non-2D6 group compared to the 2D6 group (0.34 ± 0.35 and 0.18 ± 0.33 respectively; p = 0.019). Otherwise there were no significant differences found in any secondary outcomes.Conclusions: Based on these results, moderate-to-strong CYP2D6 inhibitors do not appear to have a significant impact on the withdrawal course for patients treated with a high-dose tramadol taper.
Collapse
Affiliation(s)
- Trevor Stump
- Department of Pharmacy, Summa Health System Akron Campus, Akron, OH, USA
| | - Jessica Cather
- Department of Pharmacy, Summa Health System Akron Campus, Akron, OH, USA
| | - Pamela S Moore
- Department of Pharmacy, Summa Health System Akron Campus, Akron, OH, USA
| |
Collapse
|
14
|
Salamin O, Garcia A, González‐Ruiz V, Rossi F, Bigard X, Déglon J, Daali Y, Faiss R, Saugy M, Rudaz S. Is pain temporary and glory forever? Detection of tramadol using dried blood spot in cycling competitions. Drug Test Anal 2020; 12:1649-1657. [DOI: 10.1002/dta.2923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in Anti‐Doping Sciences ‐ REDs, Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Arnaud Garcia
- School of Pharmaceutical Sciences University of Geneva, University Medical Centre Geneva 4 Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva, University Medical Centre Geneva 4 Switzerland
| | - Víctor González‐Ruiz
- School of Pharmaceutical Sciences University of Geneva, University Medical Centre Geneva 4 Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva, University Medical Centre Geneva 4 Switzerland
- Division of Biomedical and Metabolomic Analyses Swiss Centre for Applied Human Toxicology Basel Switzerland
| | - Francesca Rossi
- Strategic and Executive Direction Cycling Anti‐Doping Foundation (CADF) Aigle Switzerland
- Testing Department French Anti‐Doping Organisation (AFLD) Paris France
| | - Xavier Bigard
- Medical Department Union Cycliste Internationale (UCI) Aigle Switzerland
| | - Julien Déglon
- Forensic Toxicology and Chemistry Unit CURML, Lausanne University Hospital, Geneva University Hospitals Geneva 14 Switzerland
| | - Youssef Daali
- Clinical Pharmacology and Toxicology Geneva University Hospitals Geneva 14 Switzerland
| | - Raphaël Faiss
- Center of Research and Expertise in Anti‐Doping Sciences ‐ REDs, Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Martial Saugy
- Center of Research and Expertise in Anti‐Doping Sciences ‐ REDs, Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences University of Geneva, University Medical Centre Geneva 4 Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva, University Medical Centre Geneva 4 Switzerland
- Division of Biomedical and Metabolomic Analyses Swiss Centre for Applied Human Toxicology Basel Switzerland
| |
Collapse
|
15
|
Saiz-Rodríguez M, Ochoa D, Román M, Zubiaur P, Koller D, Mejía G, Abad-Santos F. Involvement of CYP2D6 and CYP2B6 on tramadol pharmacokinetics. Pharmacogenomics 2020; 21:663-675. [PMID: 32538291 DOI: 10.2217/pgs-2020-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study included 24 healthy volunteers who received a single 37.5 mg oral dose of tramadol. We analyzed 18 polymorphisms within CYP2D6, CYP2B6, CYP3A, COMT, ABCB1, SLC22A1 and OPRM1 genes by quantitative PCR, to study whether these polymorphisms affect its pharmacokinetics, pharmacodynamics and safety. CYP2D6 intermediate metabolizers (n = 6) showed higher tramadol plasma concentrations and lower clearance compared with normal and ultrarapid metabolizers. CYP2B6 G516T T/T (n = 2) genotype was also associated to higher tramadol plasma levels. No other polymorphism affected tramadol pharmacokinetics. Three volunteers experienced a prolonged QTc not associated with the genetic variants studied or altered phamacokinetic parameters. The correlation of CYP2B6 genotype with higher tramadol concentrations is remarkable since its influence on its elimination is also relevant and has been less studied to date. However, given our small sample size, it is important to interpret our results with caution.
Collapse
Affiliation(s)
- Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,Pharmacology Department, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
16
|
Raj K, Chawla P, Singh S. Neurobehavioral Consequences Associated with Long Term Tramadol Utilization and Pathological Mechanisms. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:758-768. [DOI: 10.2174/1871527318666191112124435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
:
Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity
and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side
effects in comparison to other opioid analgesics, and is useful for the management of neurological
problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological
disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease.
Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects
on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation
and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s
disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC
and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective
Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes
serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced
to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced
level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s
Disease (PD).
Collapse
Affiliation(s)
- Khadga Raj
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|