1
|
Xu X, Chen M, Zhu D. Reperfusion and cytoprotective agents are a mutually beneficial pair in ischaemic stroke therapy: an overview of pathophysiology, pharmacological targets and candidate drugs focusing on excitotoxicity and free radical. Stroke Vasc Neurol 2024; 9:351-359. [PMID: 37832977 PMCID: PMC11420919 DOI: 10.1136/svn-2023-002671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Stroke is the second-leading cause of death and the leading cause of disability in much of the world. In particular, China faces the greatest challenge from stroke, since the population is aged quickly. In decades of clinical trials, no neuroprotectant has had reproducible efficacy on primary clinical end points, because reperfusion is probably a necessity for neuroprotection to be clinically beneficial. Fortunately, the success of thrombolysis and endovascular thrombectomy has taken us into a reperfusion era of acute ischaemic stroke (AIS) therapy. Brain cytoprotective agents can prevent detrimental effects of ischaemia, and therefore 'freeze' ischaemic penumbra before reperfusion, extend the time window for reperfusion therapy. Because reperfusion often leads to reperfusion injury, including haemorrhagic transformation, brain oedema, infarct progression and neurological worsening, cytoprotective agents will enhance the efficacy and safety of reperfusion therapy by preventing or reducing reperfusion injuries. Therefore, reperfusion and cytoprotective agents are a mutually beneficial pair in AIS therapy. In this review, we outline critical pathophysiological events causing cell death within the penumbra after ischaemia or ischaemia/reperfusion in the acute phase of AIS, focusing on excitotoxicity and free radicals. We discuss key pharmacological targets for cytoprotective therapy and evaluate the recent advances of cytoprotective agents going through clinical trials, highlighting multitarget cytoprotective agents that intervene at multiple levels of the ischaemic and reperfusion cascade.
Collapse
Affiliation(s)
- Xiumei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongya Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Yuan L, Jiang D, Pinkham A, Kirkland M. Development, validation and application of a capillary microsampling LC-MS/MS method for the quantification of BIIB131 (SMTP-7) in rat plasma. J Pharm Biomed Anal 2023; 236:115752. [PMID: 37769527 DOI: 10.1016/j.jpba.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Capillary microsampling (CMS) is a technique that can significantly reduce the blood collection volume compared to conventional sampling methods, and thus is much preferred for studies in rats and mice. BIIB131 (SMTP-7) is a novel thrombolytic drug candidate currently under Phase 2 clinical development for the treatment of acute ischemic stroke. To support the safety studies in rats, an accurate and reliable CMS LC-MS/MS assay for the quantification of BIIB131 in rat plasma was developed and validated. This method utilized stable-isotope labeled [13C515N2]-BIIB131 as the internal standard. The samples were extracted using acid-assisted liquid-liquid extraction with methyl tert-butyl ether (MTBE) and formic acid. The chromatographic separation was achieved on an ACE Excel 3 Super C18 analytical column (2.1 mm × 50 mm, 3.0 µm) using a gradient elution. The mass spectrometric detection of BIIB131 and its internal standard was achieved using positive ion electrospray multiple reaction monitoring (MRM). The standard curve ranged from 0.50 to 300 ng/mL for BIIB131 and was fitted to a 1/x2 weighted linear regression model. For regular QCs, the intra-assay precision was 1.7-6.1 % CV, the inter-assay precision was 2.7-11.0 % CV, and the intra-assay and inter-assay accuracy (%Bias) were -20.0-10.6 % and -7.8-6.3 %, respectively. For CMS QCs, the intra-assay and inter-assay precision were 2.2-13.6 % and 6.7-12.9 % CV, and the intra-assay and inter-assay accuracy (%Bias) were -13.2-15.0 % and -7.8-4.2 %, respectively. The validated CMS LC-MS/MS method has been successfully applied to a safety study in rats.
Collapse
Affiliation(s)
- Long Yuan
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney St, Cambridge, MA 02142, USA.
| | - Di Jiang
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Andrew Pinkham
- Charles River Laboratories, 334 South Street, Shrewsbury, MA 01545, USA
| | - Melissa Kirkland
- Nonclinical Safety Science, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Terasaki M, Shibata K, Mori Y, Saito T, Matsui T, Ohara M, Fukui T, Hasumi K, Higashimoto Y, Nobe K, Yamagishi SI. SMTP-44D Inhibits Atherosclerotic Plaque Formation in Apolipoprotein-E Null Mice Partly by Suppressing the AGEs-RAGE Axis. Int J Mol Sci 2023; 24:ijms24076505. [PMID: 37047475 PMCID: PMC10094964 DOI: 10.3390/ijms24076505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
SMTP-44D has been reported to have anti-oxidative and anti-inflammatory reactions, including reduced expression of receptor for advanced glycation end products (RAGE) in experimental diabetic neuropathy. Although activation of RAGE with its ligands, and advanced glycation end products (AGEs), play a crucial role in atherosclerotic cardiovascular disease, a leading cause of death in diabetic patients, it remains unclear whether SMTP-44D could inhibit experimental atherosclerosis by suppressing the AGEs–RAGE axis. In this study, we investigated the effects of SMTP-44D on atherosclerotic plaque formation and expression of AGEs in apolipoprotein-E null (Apoe−/−) mice. We further studied here whether and how SMTP-44D inhibited foam cell formation of macrophages isolated from Apoe−/− mice ex vivo. Although administration of SMTP-44D to Apoe−/− mice did not affect clinical or biochemical parameters, it significantly decreased the surface area of atherosclerotic lesions and reduced the atheromatous plaque size, macrophage infiltration, and AGEs accumulation in the aortic roots. SMTP-44D bound to immobilized RAGE and subsequently attenuated the interaction of AGEs with RAGE in vitro. Furthermore, foam cell formation evaluated by Dil-oxidized low-density lipoprotein (ox-LDL) uptake, and gene expression of RAGE, cyclin-dependent kinase 5 (Cdk5) and CD36 in macrophages isolated from SMTP-44D-treated Apoe−/− mice were significantly decreased compared with those from saline-treated mice. Gene expression levels of RAGE and Cdk5 were highly correlated with each other, the latter of which was also positively associated with that of CD36. The present study suggests that SMTP-44D may inhibit atherosclerotic plaque formation in Apoe−/− mice partly by blocking the AGEs-RAGE-induced ox-LDL uptake into macrophages via the suppression of Cdk5-CD36 pathway.
Collapse
|
4
|
Moritoyo T, Nishimura N, Hasegawa K, Ishii S, Kirihara K, Takata M, Svensson AK, Umeda-Kameyama Y, Kawarasaki S, Ihara R, Sakanaka C, Wakabayashi Y, Niizuma K, Tominaga T, Yamazaki T, Hasumi K. A first-in-human study of the anti-inflammatory profibrinolytic TMS-007, an SMTP family triprenyl phenol. Br J Clin Pharmacol 2022; 89:1809-1819. [PMID: 36562925 DOI: 10.1111/bcp.15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS TMS-007, an SMTP family member, modulates plasminogen conformation and enhances plasminogen-fibrin binding, leading to promotion of endogenous fibrinolysis. Its anti-inflammatory action, mediated by soluble epoxide hydrolase inhibition, may contribute to its efficacy. Evidence suggests that TMS-007 can effectively treat experimental thrombotic and embolic strokes with a wide time window, while reducing haemorrhagic transformation. We aim to evaluate the safety, pharmacokinetics and pharmacodynamics of TMS-007 in healthy volunteers. METHODS This was a randomized, placebo-controlled, double blind, dose-escalation study, administered as a single intravenous infusion of TMS-007 in cohorts of healthy male Japanese subjects. Six cohorts were planned, but only five were completed. In each cohort (n = 8), individuals were randomized to receive one of five doses of TMS-007 (3, 15, 60, 180 or 360 mg; n = 6) or placebo (n = 2). RESULTS TMS-007 was generally well tolerated, and no serious adverse events were attributed to the drug. A linear dose-dependency was observed for plasma TMS-007 levels. No symptoms of bleeding were observed on brain MRI analysis, and no bleeding-related responses were found on laboratory testing. The plasma levels of the coagulation factor fibrinogen and the anti-fibrinolysis factor α2 -antiplasmin levels were unchanged after TMS-007 dosing. A slight increase in the plasma level of plasmin-α2 -antiplasmin complex, an index of plasmin formation, was observed in the TMS-007 group in cohort 2. CONCLUSIONS TMS-007 is generally well tolerated and exhibits favourable pharmacokinetic profiles that warrant further clinical development.
Collapse
Affiliation(s)
- Takashi Moritoyo
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Nishimura
- Division of Research and Development, TMS Co., Ltd., Tokyo, Japan
| | - Keiko Hasegawa
- Division of Research and Development, TMS Co., Ltd., Tokyo, Japan
| | - Shinya Ishii
- Department of Geriatric Medicine, University of Tokyo Hospital, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, University of Tokyo Hospital, Tokyo, Japan.,Disability Services Office, University of Tokyo, Tokyo, Japan
| | - Munenori Takata
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Akiko Kishi Svensson
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan.,Precision Health, Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Yumi Umeda-Kameyama
- Department of Geriatric Medicine, University of Tokyo Hospital, Tokyo, Japan
| | - Shuichi Kawarasaki
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Ryoko Ihara
- Unit for Early and Exploratory Clinical Department, University of Tokyo Hospital, Tokyo, Japan
| | - Chie Sakanaka
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Yurie Wakabayashi
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Yamazaki
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Keiji Hasumi
- Division of Research and Development, TMS Co., Ltd., Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
5
|
Hashimoto T, Shibata K, Hasumi K, Honda K, Nobe K. Effect of SMTP-7 on Cisplatin-Induced Nephrotoxicity in Mice. Biol Pharm Bull 2022; 45:1832-1838. [DOI: 10.1248/bpb.b22-00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Terumasa Hashimoto
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | | | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Kazuo Honda
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Koji Nobe
- Pharmacological Research Center, Showa University
| |
Collapse
|
6
|
Hang S, Chen H, Wu W, Wang S, Fang Y, Sheng R, Tu Q, Guo R. Progress in Isoindolone Alkaloid Derivatives from Marine Microorganism: Pharmacology, Preparation, and Mechanism. Mar Drugs 2022; 20:md20060405. [PMID: 35736208 PMCID: PMC9227046 DOI: 10.3390/md20060405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Compound 1 (SMTP-7, also FGFC1), an isoindolone alkaloid from marine fungi Starchbotrys longispora FG216 and fungi Stachybotrys microspora IFO 30018, possessed diverse bioactivities such as thrombolysis, anti-inflammatory and anti-oxidative properties, and so on. It may be widely used for the treatment of various diseases, including cerebral infarction, stroke, ischemia/reperfusion damage, acute kidney injury, etc. Especially in cerebral infarction, compound 1 could reduce hemorrhagic transformation along with thrombolytic therapy, as the traditional therapies are accompanied with bleeding risks. In the latest studies, compound 1 selectively inhibited the growth of NSCLC cells with EGFR mutation, thus demonstrating its excellent anti-cancer activity. Herein, we summarized pharmacological activities, preparation of staplabin congeners—especially compound 1—and the mechanism of compound 1, with potential therapeutic applications.
Collapse
Affiliation(s)
- Sijin Hang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.H.); (W.W.)
| | - Hui Chen
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.H.); (W.W.)
| | - Shiyi Wang
- AIEN Institute, Shanghai Ocean University, Shanghai 201306, China;
| | - Yiwen Fang
- Department of Chemistry, College of Science, Shantou University, Shantou 515063, China;
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
| | - Qidong Tu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
- Correspondence: (Q.T.); (R.G.)
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.H.); (W.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Correspondence: (Q.T.); (R.G.)
| |
Collapse
|
7
|
Shinouchi R, Shibata K, Jono S, Hasumi K, Nobe K. SMTP-44D Exerts Antioxidant and Anti-Inflammatory Effects through Its Soluble Epoxide Hydrolase Inhibitory Action in Immortalized Mouse Schwann Cells upon High Glucose Treatment. Int J Mol Sci 2022; 23:5187. [PMID: 35563575 PMCID: PMC9104197 DOI: 10.3390/ijms23095187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetic neuropathy (DN) is a major complication of diabetes mellitus. We have previously reported the efficacy of Stachybotrys microspora triprenyl phenol-44D (SMTP-44D) for DN through its potential antioxidant and anti-inflammatory activities. However, the mechanisms underlying the antioxidant and anti-inflammatory activities of SMTP-44D remain unclear. The present study aimed to explore the mechanism of these effects of SMTP-44D in regard to its inhibition of soluble epoxide hydrolase (sEH) in immortalized mouse Schwann cells (IMS32) following high glucose treatment. IMS32 cells were incubated in a high glucose medium for 48 h and then treated with SMTP-44D for 48 h. After incubation, the ratio of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), oxidative stress markers, such as NADPH oxidase-1 and malondialdehyde, inflammatory factors, such as the ratio of nuclear to cytosolic levels of NF-κB and the levels of IL-6, MCP-1, MMP-9, the receptor for the advanced glycation end product (RAGE), and apoptosis, were evaluated. SMTP-44D treatment considerably increased the ratio of EETs to DHETs and mitigated oxidative stress, inflammation, RAGE induction, and apoptosis after high glucose treatment. In conclusion, SMTP-44D can suppress the induction of apoptosis by exerting antioxidant and anti-inflammatory effects, possibly through sEH inhibition. SMTP-44D can be a potential therapeutic agent against DN.
Collapse
Affiliation(s)
- Ryosuke Shinouchi
- Division of Pharmacology, Department of Pharmacology, Toxicology & Therapeutics, School of Pharmacy, Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Keita Shibata
- Division of Pharmacology, Department of Pharmacology, Toxicology & Therapeutics, School of Pharmacy, Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shiori Jono
- Division of Pharmacology, Department of Pharmacology, Toxicology & Therapeutics, School of Pharmacy, Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo 183-8509, Japan
- Division of Research and Development, TMS Co., Ltd., 1-23-3-501 Miyamachi, Fuchu-shi, Tokyo 183-0023, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology & Therapeutics, School of Pharmacy, Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
8
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
9
|
Yan S, Zhang B, Feng J, Wu H, Duan N, Zhu Y, Zhao Y, Shen S, Zhang K, Wu W, Liu N. FGFC1 Selectively Inhibits Erlotinib-Resistant Non-Small Cell Lung Cancer via Elevation of ROS Mediated by the EGFR/PI3K/Akt/mTOR Pathway. Front Pharmacol 2022; 12:764699. [PMID: 35126111 PMCID: PMC8807551 DOI: 10.3389/fphar.2021.764699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been used as a first-line treatment for patients harboring with EGFR mutations in advanced NSCLC. Nevertheless, the drug resistance after continuous and long-term chemotherapies considerably limits its clinical efficacy. Therefore, it is of great importance to develop new chemotherapeutic agents and treatment strategies to conquer the drug resistance. FGFC1 (Fungi fibrinolytic compound 1), a type of bisindole alkaloid from a metabolite of the rare marine fungi Starchbotrys longispora. FG216, has exhibited excellent fibrinolytic and anti-inflammatory activity. However, the potent efficacy of FGFC1 in human cancer therapy requires further study. Herein, we demonstrated that FGFC1 selectively suppressed the growth of NSCLC cells with EGFR mutation. Mechanistically, FGFC1 treatment significantly induced the apoptosis of erlotinib-resistant NSCLC cells H1975 in a dose-dependent manner, which was proved to be mediated by mitochondrial dysfunction and elevated accumulation of intracellular reactive oxygen species (ROS). Scavenging ROS not only alleviated FGFC1-induced apoptosis but also relieved the decrease of phospho-Akt. We further confirmed that FGFC1 significantly decreased the phosphorylation of protein EGFR, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) in H1975 cells. Notably, PI3K inhibitor (LY294002) could promote the accumulation of ROS and the expression levels of apoptosis-related proteins induced by FGFC1. Molecular dynamics simulations indicated that FGFC1 can inhibit EGFR and its downstream PI3K/Akt/mTOR pathway through directly binding to EGFR, which displayed a much higher binding affinity to EGFRT790M/L858R than EGFRWT. Additionally, FGFC1 treatment also inhibited the migration and invasion of H1975 cells. Finally, FGFC1 effectively inhibited tumor growth in the nude mice xenograft model of NSCLC. Taken together, our results indicate that FGFC1 may be a potential candidate for erlotinib-resistant NSCLC therapy.
Collapse
Affiliation(s)
- Shike Yan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Namin Duan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yamin Zhu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yueliang Zhao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
10
|
Liston TE, Hama A, Boltze J, Poe RB, Natsume T, Hayashi I, Takamatsu H, Korinek WS, Lechleiter JD. Adenosine A1R/A3R (Adenosine A1 and A3 Receptor) Agonist AST-004 Reduces Brain Infarction in a Nonhuman Primate Model of Stroke. Stroke 2021; 53:238-248. [PMID: 34802248 DOI: 10.1161/strokeaha.121.036396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Treatment with A1R/A3R (adenosine A1 and A3 receptor) agonists in rodent models of acute ischemic stroke results in significantly reduced lesion volume, indicating activation of adenosine A1R or A3R is cerebroprotective. However, dosing and timing required for cerebroprotection has yet to be established, and whether adenosine A1R/A3R activation will lead to cerebroprotection in a gyrencephalic species has yet to be determined. METHODS The current study used clinical study intervention timelines in a nonhuman primate model of transient, 4-hour middle cerebral artery occlusion to investigate a potential cerebroprotective effect of the dual adenosine A1R/A3R agonist AST-004. Bolus and then 22 hours intravenous infusion of AST-004 was initiated 2 hours after transient middle cerebral artery occlusion. Primary outcome measures included lesion volume, lesion growth kinetics, penumbra volume as well as initial pharmacokinetic-pharmacodynamic relationships measured up to 5 days after transient middle cerebral artery occlusion. Secondary outcome measures included physiological parameters and neurological function. RESULTS Administration of AST-004 resulted in rapid and statistically significant decreases in lesion growth rate and total lesion volume. In addition, penumbra volume decline over time was significantly less under AST-004 treatment compared with vehicle treatment. These changes correlated with unbound AST-004 concentrations in the plasma and cerebrospinal fluid as well as estimated brain A1R and A3R occupancy. No relevant changes in physiological parameters were observed during AST-004 treatment. CONCLUSIONS These findings suggest that administration of AST-004 and combined A1R/A3R agonism in the brain are efficacious pharmacological interventions in acute ischemic stroke and warrant further clinical evaluation.
Collapse
Affiliation(s)
- Theodore E Liston
- Astrocyte Pharmaceuticals Inc, Cambridge, MA (T.E.L., R.B.P., W.S.K.)
| | - Aldric Hama
- Hamamatsu Pharma Research Inc, Japan (A.H., I.H., T.N., H.T.)
| | - Johannes Boltze
- Department of Neuroscience, University of Warwick, United Kingdom (J.B.)
| | - Russell B Poe
- Astrocyte Pharmaceuticals Inc, Cambridge, MA (T.E.L., R.B.P., W.S.K.)
| | | | - Ikuo Hayashi
- Hamamatsu Pharma Research Inc, Japan (A.H., I.H., T.N., H.T.)
| | | | - William S Korinek
- Astrocyte Pharmaceuticals Inc, Cambridge, MA (T.E.L., R.B.P., W.S.K.)
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio (J.D.L.)
| |
Collapse
|
11
|
Shibata K, Hashimoto T, Hasumi K, Nobe K. Potent efficacy of Stachybotrys microspora triprenyl phenol-7, a small molecule having anti-inflammatory and antioxidant activities, in a mouse model of acute kidney injury. Eur J Pharmacol 2021; 910:174496. [PMID: 34506776 DOI: 10.1016/j.ejphar.2021.174496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) increases the risk of chronic kidney disease (CKD), complicates existing CKD, and can lead to the end-stage renal disease. However, there are no approved effective therapeutics for AKI. Recent studies have suggested that inflammation and oxidative stress are the primary causes of AKI. We previously reported the potential anti-inflammatory and antioxidant activities of Stachybotrys microspora triprenyl phenol-7 (SMTP-7). The aim of the present study was to evaluate the efficacy of SMTP-7 in AKI model mice. AKI was induced in mice by ischemia of the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the removal of right kidney. The efficacy of SMTP-7 was determined by measuring the renal function using urine and serum samples and morphological assessment. For deciphering the mechanism of action of SMTP-7, inflammatory cytokines and oxidative stress in kidney were detected. SMTP-7 (0.01, 0.1, 1, 10 mg/kg) dose-dependently improved the renal function. In addition, it improved the damage to renal tubules and exhibited anti-inflammatory and antioxidant activities in the kidney of AKI mice. These results indicate the potential of SMTP-7 as a medicinal compound for the treatment of AKI.
Collapse
Affiliation(s)
- Keita Shibata
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Terumasa Hashimoto
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
12
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
13
|
Hasumi K, Suzuki E. Impact of SMTP Targeting Plasminogen and Soluble Epoxide Hydrolase on Thrombolysis, Inflammation, and Ischemic Stroke. Int J Mol Sci 2021; 22:954. [PMID: 33477998 PMCID: PMC7835936 DOI: 10.3390/ijms22020954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Stachybotrys microspora triprenyl phenol (SMTP) is a large family of small molecules derived from the fungus S. microspora. SMTP acts as a zymogen modulator (specifically, plasminogen modulator) that alters plasminogen conformation to enhance its binding to fibrin and subsequent fibrinolysis. Certain SMTP congeners exert anti-inflammatory effects by targeting soluble epoxide hydrolase. SMTP congeners with both plasminogen modulation activity and anti-inflammatory activity ameliorate various aspects of ischemic stroke in rodents and primates. A remarkable feature of SMTP efficacy is the suppression of hemorrhagic transformation, which is exacerbated by conventional thrombolytic treatments. No drug with such properties has been developed yet, and SMTP would be the first to promote thrombolysis but suppress disease-associated bleeding. On the basis of these findings, one SMTP congener is under clinical study and development. This review summarizes the discovery, mechanism of action, pharmacological activities, and development of SMTP.
Collapse
Affiliation(s)
- Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Division of Research and Development, TMS Co., Ltd., Tokyo 183-0023, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| |
Collapse
|
14
|
Otsu Y, Namekawa M, Toriyabe M, Ninomiya I, Hatakeyama M, Uemura M, Onodera O, Shimohata T, Kanazawa M. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: A literature review. J Neurol Sci 2020; 419:117217. [PMID: 33161301 DOI: 10.1016/j.jns.2020.117217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Reperfusion therapies by tissue plasminogen activator (tPA) and mechanical thrombectomy (MT) have ushered in a new era in the treatment of acute ischemic stroke (AIS). However, reperfusion therapy-related HT remains an enigma. AIM To provide a comprehensive review focused on emerging concepts of stroke and therapeutic strategies, including the use of protective agents to prevent HT after reperfusion therapies for AIS. METHODS A literature review was performed using PubMed and the ClinicalTrials.gov database. RESULTS Risk of HT increases with delayed initiation of tPA treatment, higher baseline glucose level, age, stroke severity, episode of transient ischemic attack within 7 days of stroke onset, and hypertension. At a molecular level, HT that develops after thrombolysis is thought to be caused by reactive oxygen species, inflammation, remodeling factor-mediated effects, and tPA toxicity. Modulation of these pathophysiological mechanisms could be a therapeutic strategy to prevent HT after tPA treatment. Clinical mechanisms underlying HT after MT are thought to involve smoking, a low Alberta Stroke Program Early CT Score, use of general anesthesia, unfavorable collaterals, and thromboembolic migration. However, the molecular mechanisms are yet to be fully investigated. Clinical trials with MT and protective agents have also been planned and good outcomes are expected. CONCLUSION To fully utilize the easily accessible drug-tPA-and the high recanalization rate of MT, it is important to reduce bleeding complications after recanalization. A future study direction could be to investigate the recovery of neurological function by combining reperfusion therapies with cell therapies and/or use of pleiotropic protective agents.
Collapse
Affiliation(s)
- Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Namekawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masafumi Toriyabe
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan; Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
15
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|