1
|
Li E, van der Heyden MAG. The network of cardiac K IR2.1: its function, cellular regulation, electrical signaling, diseases and new drug avenues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6369-6389. [PMID: 38683369 PMCID: PMC11422472 DOI: 10.1007/s00210-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The functioning of the human heart relies on complex electrical and communication systems that coordinate cardiac contractions and sustain rhythmicity. One of the key players contributing to this intricate system is the KIR2.1 potassium ion channel, which is encoded by the KCNJ2 gene. KIR2.1 channels exhibit abundant expression in both ventricular myocytes and Purkinje fibers, exerting an important role in maintaining the balance of intracellular potassium ion levels within the heart. And by stabilizing the resting membrane potential and contributing to action potential repolarization, these channels have an important role in cardiac excitability also. Either gain- or loss-of-function mutations, but also acquired impairments of their function, are implicated in the pathogenesis of diverse types of cardiac arrhythmias. In this review, we aim to elucidate the system functions of KIR2.1 channels related to cellular electrical signaling, communication, and their contributions to cardiovascular disease. Based on this knowledge, we will discuss existing and new pharmacological avenues to modulate their function.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands.
| |
Collapse
|
2
|
Wu B, Zheng R, Ouyang M, Zhu Y, Lu H, Liao K, Dong Y, Su B, Huang J, Zhong T, Liu Z, Li J. The water extract of Amydrium sinense (Engl.) H. Li ameliorates Isoproterenol-induced cardiac hypertrophy through inhibiting the NF-κB signaling pathway. Biomed Pharmacother 2024; 172:116241. [PMID: 38330711 DOI: 10.1016/j.biopha.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.
Collapse
Affiliation(s)
- Bingmin Wu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau
| | - Ruiyan Zheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minhua Ouyang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Zhu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kaihao Liao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau
| | - Bolun Su
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau
| | - Junying Huang
- College of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jingyan Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Li E, Kool W, Woolschot L, van der Heyden MAG. Chronic Propafenone Application Increases Functional K IR2.1 Expression In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16030404. [PMID: 36986503 PMCID: PMC10056987 DOI: 10.3390/ph16030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Expression and activity of inwardly rectifying potassium (KIR) channels within the heart are strictly regulated. KIR channels have an important role in shaping cardiac action potentials, having a limited conductance at depolarized potentials but contributing to the final stage of repolarization and resting membrane stability. Impaired KIR2.1 function causes Andersen-Tawil Syndrome (ATS) and is associated with heart failure. Restoring KIR2.1 function by agonists of KIR2.1 (AgoKirs) would be beneficial. The class 1c antiarrhythmic drug propafenone is identified as an AgoKir; however, its long-term effects on KIR2.1 protein expression, subcellular localization, and function are unknown. Propafenone's long-term effect on KIR2.1 expression and its underlying mechanisms in vitro were investigated. KIR2.1-carried currents were measured by single-cell patch-clamp electrophysiology. KIR2.1 protein expression levels were determined by Western blot analysis, whereas conventional immunofluorescence and advanced live-imaging microscopy were used to assess the subcellular localization of KIR2.1 proteins. Acute propafenone treatment at low concentrations supports the ability of propafenone to function as an AgoKir without disturbing KIR2.1 protein handling. Chronic propafenone treatment (at 25-100 times higher concentrations than in the acute treatment) increases KIR2.1 protein expression and KIR2.1 current densities in vitro, which are potentially associated with pre-lysosomal trafficking inhibition.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Willy Kool
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Liset Woolschot
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|