1
|
Kumar T, Wang JG, Xu CH, Lu X, Mao J, Lin XQ, Kong CY, Li CJ, Li XJ, Tian CY, Ebid MHM, Liu XL, Liu HB. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1739. [PMID: 38999579 PMCID: PMC11244436 DOI: 10.3390/plants13131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.
Collapse
Affiliation(s)
- Tanweer Kumar
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agriculture, Fisheries and Co-Operative Department, Charsadda Road, Mardan 23210, Khyber Pakhtunkhwa, Pakistan
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chao-Hua Xu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xin Lu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Jun Mao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xiu-Qin Lin
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Kong
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Jia Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xu-Juan Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Tian
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Mahmoud H. M. Ebid
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Xin-Long Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| |
Collapse
|
2
|
Nguyen TD, La VH, Nguyen VD, Bui TT, Nguyen TT, Je YH, Chung YS, Ngo XB. Convergence of Bar and Cry1Ac Mutant Genes in Soybean Confers Synergistic Resistance to Herbicide and Lepidopteran Insects. FRONTIERS IN PLANT SCIENCE 2021; 12:698882. [PMID: 34733296 PMCID: PMC8559871 DOI: 10.3389/fpls.2021.698882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Soybean is a globally important crop species, which is subject to pressure by insects and weeds causing severe substantially reduce yield and quality. Despite the success of transgenic soybean in terms of Bacillus thuringiensis (Bt) and herbicide tolerance, unforeseen mitigated performances have still been inspected due to climate changes that favor the emergence of insect resistance. Therefore, there is a need to develop a biotech soybean with elaborated gene stacking to improve insect and herbicide tolerance in the field. In this study, new gene stacking soybean events, such as bialaphos resistance (bar) and pesticidal crystal protein (cry)1Ac mutant 2 (M#2), are being developed in Vietnamese soybean under field condition. Five transgenic plants were extensively studied in the herbicide effects, gene expression patterns, and insect mortality across generations. The increase in the expression of the bar gene by 100% in the leaves of putative transgenic plants was a determinant of herbicide tolerance. In an insect bioassay, the cry1Ac-M#2 protein tested yielded higher than expected larval mortality (86%), reflecting larval weight gain and weight of leaf consumed were less in the T1 generation. Similarly, in the field tests, the expression of cry1Ac-M#2 in the transgenic soybean lines was relatively stable from T0 to T3 generations that corresponded to a large reduction in the rate of leaves and pods damage caused by Lamprosema indicata and Helicoverpa armigera. The transgenic lines converged two genes, producing a soybean phenotype that was resistant to herbicide and lepidopteran insects. Furthermore, the expression of cry1Ac-M#2 was dominant in the T1 generation leading to the exhibit of better phenotypic traits. These results underscored the great potential of combining bar and cry1Ac mutation genes in transgenic soybean as pursuant of ensuring resistance to herbicide and lepidopteran insects.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Van Hien La
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Van Duy Nguyen
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Tri Thuc Bui
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Thi Tinh Nguyen
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Young Soo Chung
- Department of Genetic Engineering, Dong A University, Busan, South Korea
| | - Xuan Binh Ngo
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
- Department of Science and Technology for Economic Technical Branches, Ministry of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
3
|
Iqbal A, Khan RS, Khan MA, Gul K, Jalil F, Shah DA, Rahman H, Ahmed T. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Mol Biotechnol 2021; 63:557-568. [PMID: 33893996 DOI: 10.1007/s12033-021-00328-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.
Collapse
Affiliation(s)
- Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan.
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Karim Gul
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Daud Ali Shah
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Dessoky ES, Ismail RM, Elarabi NI, Abdelhadi AA, Abdallah NA. Improvement of sugarcane for borer resistance using Agrobacterium mediated transformation of cry1Ac gene. GM CROPS & FOOD 2021; 12:47-56. [PMID: 32862762 PMCID: PMC7595610 DOI: 10.1080/21645698.2020.1809318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sugarcane (Saccharum X officinarum) is one of the most important crops used to produce sugar and raw material for biofuel in the world. One of the main causes for sucrose content and yield losses is the attack by insect. In this investigation, cry1Ac gene was introduced into sugarcane variety GT54-9(C9) using the Agrobacterium tumefaciens transformation method for transgenic sugarcane production presenting insect-resistance. The A. tumefaciens strain GV1303 including pARTcry1Ac vector was used for the production of transformed sugarcane. The Bacillus thuringiensis cry gene were successfully used to produce transgenic plants used for the improvement of both agronomic efficiency and product quality by acquiring insect resistance. PCR and Southern hybridization techniques were used to confirm the cry1Ac gene incorporation into sugarcane genome. Transformation percentage was 22.2% using PCR analysis with specific primers for cry1Ac and npt-II (Neomycin phosphotransferase) genes. The expression of cry1Ac gene was determined using reverse transcriptase polymerase chain reaction (RT-PCR), QuickStix test, and insect bioassays. Bioassays for transformed sugarcane plants showed high level of toxicity to Sesamia cretica giving 100% mortality of the larvae. Sugarcane insect resistance was improved significantly by using cry1Ac gene transformation.
Collapse
Affiliation(s)
- Eldessoky S Dessoky
- Department of Biology, Faculty of Science, Taif University , Taif, Kingdom of Saudi Arabia.,, Plant Genetic Transformation Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) , Giza, Egypt
| | - Roba M Ismail
- , Plant Genetic Transformation Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) , Giza, Egypt
| | - Nagwa I Elarabi
- Faculty of Agriculture, Genetics Department, Cairo University , Giza, Egypt
| | | | - Naglaa A Abdallah
- Faculty of Agriculture, Genetics Department, Cairo University , Giza, Egypt
| |
Collapse
|
5
|
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:768609. [PMID: 34858464 PMCID: PMC8632530 DOI: 10.3389/fpls.2021.768609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.
Collapse
Affiliation(s)
- Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Ramón Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - María Francisca Perera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Josefina Racedo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- Centro Cientifico Tecnológico (CCT) CONICET NOA Sur, San Miguel de Tucumán, Argentina
| | - Aldo Sergio Noguera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- *Correspondence: Bjorn Welin,
| |
Collapse
|
6
|
Xu S, Cao G, Wang J. The complete mitochondria genome sequence of Proceras venosatum (Walker). MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:1218-1219. [PMID: 33490574 PMCID: PMC7800977 DOI: 10.1080/23802359.2018.1532333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proceras venosatum (Walker) is one of the major pests, which caused yield losses of sugarcane in the world. The complete mitochondria genome (mtDNA) is reported; a circular molecule of 15,378 bp in size, which including 39.69% for A, 11.89% for C, 7.19% for G, and 40.96% for T. There are 36 genes in the mtDNA, including 3 species with 15 protein-coding genes, 2 different species ribosomal RNA genes (S and L rRNA species), 22 transfer RNA genes (20 RNA species). Proceras venosatum (Walker) and other 18 species belonging to lepidopteran were carried out phylogenetic analyses by used MEGA 6.06 with Neighbor-Joining methods. The mtDNA of P. venosatum (Walker) were clustered in lepidopteran superfamilies.
Collapse
Affiliation(s)
- Shiqiang Xu
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
| | - Gan Cao
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
| | - Jihua Wang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Gao S, Yang Y, Xu L, Guo J, Su Y, Wu Q, Wang C, Que Y. Particle Bombardment of the cry2A Gene Cassette Induces Stem Borer Resistance in Sugarcane. Int J Mol Sci 2018; 19:E1692. [PMID: 29882818 PMCID: PMC6032331 DOI: 10.3390/ijms19061692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022] Open
Abstract
Sugarcane borer is the most common and harmful pest in Chinese sugarcane fields, and can cause damage to the whole plant during the entire growing season. To improve borer resistance in sugarcane, we constructed a plant expression vector pGcry2A0229 with the bar gene as the marker and the cry2A gene as the target, and introduced it into embryogenic calli of most widely cultivated sugarcane cultivar ROC22 by particle bombardment. After screening with phosphinothricin in vitro and Basta spray, 21 resistance-regenerated plants were obtained, and 10 positive transgenic lines harboring the cry2A gene were further confirmed by conventional PCR detection. Real-time quantitative PCR (RT-qPCR) analysis showed that the copy number of the cry2A gene varied among different transgenic lines but did not exceed four copies. Quantitative ELISA analysis showed that there was no linear relationship with copy number but negatively correlated with the percentage of borer-infested plants. The analysis of industrial and agronomic traits showed that the theoretical sugar yields of transgenic lines TR-4 and TR-10 were slightly lower than that of the control in both plant cane and ratoon cane; nevertheless, TR-4 and TR-10 lines exhibited markedly lower in frequency of borer-infested plants in plant cane and in the ratoon cane compared to the control. Our results indicate that the introduction of the cry2A gene via bombardment produces transgenic lines with obviously increased stem borer resistance and comparable sugar yield, providing a practical value in direct commercial cultivation and crossbreeding for ROC22 has been used as the most popular elite genitor in various breeding programs in China.
Collapse
Affiliation(s)
- Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Yingying Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Chunfeng Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| |
Collapse
|
8
|
Qamar Z, Riaz S, Nasir IA, Ali Q, Husnain T. Transformation and evaluation of different transgenic lines for Glyphosate tolerance and cane borer resistance genes in sugarcane (Saccharum officinarum L.). CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kim JY, Nong G, Rice JD, Gallo M, Preston JF, Altpeter F. In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. PLANT MOLECULAR BIOLOGY 2017; 93:465-478. [PMID: 28005227 DOI: 10.1007/s11103-016-0573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105 °C and only residual catalytic activity at temperatures below 70 °C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35 °C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.
Collapse
Affiliation(s)
- Jae Yoon Kim
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida - IFAS, Gainesville, FL, USA
- Division of Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Guang Nong
- Department of Microbiology and Cell Science, University of Florida - IFAS, Gainesville, FL, USA
| | - John D Rice
- Department of Microbiology and Cell Science, University of Florida - IFAS, Gainesville, FL, USA
| | - Maria Gallo
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida - IFAS, Gainesville, FL, USA
- Delaware Valley University, Doylestown, PA, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida - IFAS, Gainesville, FL, USA
| | - Fredy Altpeter
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida - IFAS, Gainesville, FL, USA.
| |
Collapse
|
10
|
Su Y, Wang Z, Liu F, Li Z, Peng Q, Guo J, Xu L, Que Y. Isolation and Characterization of ScGluD2, a New Sugarcane beta-1,3-Glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1348. [PMID: 27642288 PMCID: PMC5009122 DOI: 10.3389/fpls.2016.01348] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
Beta-1,3-glucanases (EC 3.2.1.39), commonly known as pathogenesis-related (PR) proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ScGluD2 (GenBank Acc No. KF664181) from sugarcane. An X8 domain was present at the C terminal region of ScGluD2, suggesting beta-1,3-glucan-binding function. Phylogenetic analysis showed that the predicted ScGluD2 protein was classified into subfamily D beta-1,3-glucanase. Localization of the ScGluD2 protein in the plasma membrane was determined by tagging it with green fluorescent protein. The expression of ScGluD2 was more up-regulated in sugarcane smut-resistant cultivars in the early stage (1 or 3 days) than in the susceptible ones after being challenged by the smut pathogen, revealing that ScGluD2 may be involved in defense against the invasion of Sporisorium scitamineum. Transient overexpression of ScGluD2 in Nicotiana benthamiana leaves induced a defense response and exhibited antimicrobial action on the tobacco pathogens Pseudomonas solanacearum and Botrytis cinerea, further demonstrating that ScGluD2 was related to the resistance to plant pathogens. However, the transcripts of ScGluD2 partially increased (12 h) under NaCl stress, and were steadily up-regulated from 6 to 24 h upon ABA, H2O2, and CdCl2 treatments, suggesting that ABA may be a signal molecule regulating oxidative stress and play a role in the salt and heavy metal stress-induced stimulation of ScGluD2 transcripts. Taken together, ScGluD2, a novel member of subfamily D beta-1,3-glucanase, was a stress-related gene of sugarcane involved in plant defense against smut pathogen attack and salt and heavy metal stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
11
|
Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q, Su Y, Xu L, Que Y. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer. PLoS One 2016; 11:e0153929. [PMID: 27093437 PMCID: PMC4836700 DOI: 10.1371/journal.pone.0153929] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines.
Collapse
Affiliation(s)
- Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yingying Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chunfeng Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dinggang Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- * E-mail: (LX); (YQ)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- * E-mail: (LX); (YQ)
| |
Collapse
|
12
|
Sun L, Yan M, Ding Z, Liu Y, Du M, Xi P, Liao J, Ji L, Jiang Z. Improved dominant selection markers and co-culturing conditions for efficient Agrobacterium tumefaciens-mediated transformation of Ustilago scitaminea. Biotechnol Lett 2014; 36:1309-14. [DOI: 10.1007/s10529-014-1486-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/24/2014] [Indexed: 11/28/2022]
|
13
|
Singh HP, Singh BP. Genetic Engineering of Field, Industrial and Pharmaceutical Crops. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.526416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Li X, Li S, Lang Z, Zhang J, Zhu L, Huang D. Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. PLANT CELL REPORTS 2013; 32:1299-308. [PMID: 23620344 DOI: 10.1007/s00299-013-1444-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE The study of insect-resistant transgenic tobacco provides a good foundation for the further application of the cry1Ah gene in other important crops. To improve transgene expression levels and insect resistance, the coding sequence of the novel Bacillus thuringiensis insecticidal gene cry1Ah (truncated cry1Ah) was modified according to the codon bias of the plant by increasing its GC content from the original 37 % to 48, 55, and 63 % (designated m1-cry1Ah, m2-cry1Ah, and m3-cry1Ah, respectively). In addition, the m3-cry1Ah gene was linked with a transit peptide sequence for chloroplast-targeted expression (designated ctp-m3-cry1Ah). Four plant expression vectors were constructed harboring m1-cry1Ah, m2-cry1Ah, m3-cry1Ah, or ctp-m3-cry1Ah. A total of 23 transgenic tobacco lines were produced with the four constructs by Agrobacterium tumefaciens-mediated transformation. PCR, Southern hybridization, quantitative RT-PCR and ELISA indicated that the cry1Ah gene was not only integrated into the tobacco genome, but was also successfully expressed at the mRNA and protein levels. The Cry1Ah protein level in ctp-m3-cry1Ah plants reached 4.42 μg/g fresh weight, which was a 2- to 10-fold increase over the levels observed in m1-cry1Ah, m2-cry1Ah, and m3-cry1Ah plants and resulted in the highest resistance to Helicoverpa armigera based on bioassays. Our results demonstrated that combining the codon optimization of cry1Ah gene with the targeting of Cry1Ah protein to the chloroplasts conferred a high level of protection against insects. The results of our experiments in tobacco, an important model system, provide a good foundation for enhancing the insecticidal efficacy of staple crops.
Collapse
Affiliation(s)
- Xiuying Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | | | | | | | | | | |
Collapse
|
15
|
Karimi SM, Sohail MN, Amin I, Mansoor S, Mukhtar Z. Molecular characterization of a new synthetic cry2ab gene in Nicotiana tabacum. Biotechnol Lett 2013; 35:969-74. [PMID: 23397269 DOI: 10.1007/s10529-013-1153-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
A newly-synthesized cry2Ab gene was characterized in Nicotiana tabacum, before its further transformation in cotton. Synthetic cry2Ab gene was cloned in pGreen0029 and its expression was transiently analyzed at mRNA level through agroinfiltration in tobacco. The mRNA of cry2Ab was detected after 72 h agroinfiltration through PCR using total plant RNA. This construct was then transformed into N. tabacum through Agrobacterium. Insect bioassays were conducted on detached leaves using first instar Spodoptera exigua larvae; after 96 h significant insect mortality was recorded. This newly synthesized gene was effective in controlling S. exigua first instar larvae. It can be used in combinations with other Bt genes like cry1Ac for developing resistance against major insect pests of cotton and further widening the insect control spectrum.
Collapse
Affiliation(s)
- Sohail Mehmood Karimi
- National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | | | | | | | | |
Collapse
|
16
|
Khan MS, Ali S, Iqbal J. Developmental and photosynthetic regulation of δ-endotoxin reveals that engineered sugarcane conferring resistance to 'dead heart' contains no toxins in cane juice. Mol Biol Rep 2010; 38:2359-69. [PMID: 21104030 DOI: 10.1007/s11033-010-0369-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022]
Abstract
The phosphoenolpyruvate (PEP) carboxylase is regulated at the levels of transcription and post-translation in C4 plants in light and abundantly accumulates in leaf mesophyll cells. We report here developmental and photosynthetic regulation of stably accumulated Bacillus thuringiensis δ-endotoxin under the control of PEP-C promoter in transgenic sugarcane. In young leaves of plants, the transprotein is accumulated to 39% of the levels in mature leaves (135 ng mg(-1)), and is induced with the cell development, from base to tip. Nevertheless, these levels are decreased up to 99.98% in non-photosynthetic cells as cane matures, from top to bottom, suggesting the photosynthesis regulation of δ-endotoxin in cane cells. Further, transgenic plants are highly resistant to 'dead heart'. In these studies, Scirpophaga nivela larvae causing 'dead heart' were killed within one hour of release to the transgenic plants. Therefore, this report may be regarded as the first report that provides a better strategy for developing transgenic sugarcane lines with absolute protection against invading larvae and no toxin residues in cane juice.
Collapse
Affiliation(s)
- Muhammad Sarwar Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box 577, Faisalabad, 38000, Pakistan.
| | | | | |
Collapse
|
17
|
Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH. Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 2010; 20:759-72. [PMID: 21046242 DOI: 10.1007/s11248-010-9456-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
To improve transgene expression level, we synthesized a truncated insecticidal gene m-cry1Ac by increasing its GC content from 37.4 to 54.8%, based on the codon usage pattern of sugarcane genes, and transferred it into two sugarcane cultivars (ROC16 and YT79-177) by microprojectile bombardment. The integration sites and expression pattern of the transgene were determined, respectively, by Southern, northern and western blot analyses. The transgenic sugarcane lines produced up to 50 ng Cry1Ac protein per mg soluble proteins, which was about fivefold higher than that produced by the partially modified s-cry1Ac (GC% = 47.5%). In greenhouse plant assay, about 62% of the transgenic lines exhibited excellent resistance to heavy infestation by stem borers. In field trials, the m-cry1Ac transgenic sugarcane lines expressing high levels of Cry1Ac were immune from insect attack. In contrast, expression of s-cry1Ac in transgenic sugarcane plants resulted in moderately decreased damages in internodes (0.4-1.7%) and stalks (13.3-26.7%) in comparison with the untransformed sugarcane controls, which showed about 4 and 26-40% damaged internodes and stalks, respectively. Significantly, these transgenic sugarcane lines with high levels of insect resistance showed similar agronomic and industrial traits as untransformed control plants. Taken together, the findings from this study indicate a promising potential of engineering an insect-resistant gene to tailor its protein expression levels in transgenic sugarcane to combat insect infestations.
Collapse
Affiliation(s)
- Li-Xing Weng
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Engineering Advantages, Challenges and Status of Sugarcane and other Sugar-Based Biomass Resources. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-13440-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Ananda Kumar P, Premachandran MN, Subramonian N. Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. PLANT CELL REPORTS 2010; 29:383-395. [PMID: 20179936 DOI: 10.1007/s00299-010-0829-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 05/27/2023]
Abstract
We evaluated the insecticidal toxicity of Cry1Aa, Cry1Ab and Cry1Ac toxins against neonate larvae of sugarcane shoot borer Chilo infuscatellus Snellen (Lepidoptera: Crambidae) in vitro on diet surface. With the lowest LC(50) value, Cry1Ab emerged as the most effective among the three toxins. Sugarcane cultivars Co 86032 and CoJ 64 were transformed with cry1Ab gene driven by maize ubiquitin promoter through particle bombardment and Agrobacterium-mediated transformation systems. Gene pyramiding was also attempted by retransforming sugarcane plants carrying bovine pancreatic trypsin inhibitor (aprotinin) gene, with cry1Ab. Southern analysis confirmed multiple integration of the transgene in case of particle bombardment and single site integration in Agrobacterium-mediated transformants. The expression of cry1Ab was demonstrated through Western analysis and the toxin was quantified using ELISA. The amount of Cry1Ab protein in different events varied from 0.007 to 1.73% of the total soluble leaf protein; the events transformed by Agrobacterium method showed significantly higher values. In in vivo bioassay with neonate larvae of shoot borer, transgenics produced considerably lower percentage of deadhearts despite suffering feeding damage by the borer compared with the untransformed control plants. Expressed Cry1Ab content was negatively related to deadheart damage. Aprotinin-expressing sugarcane pyramided with cry1Ab also showed reduction in damage. The potential of producing sugarcane transgenics with cry1Ab and aprotinin genes resistant to early shoot borer was discussed in the light of the results obtained.
Collapse
Affiliation(s)
- S Arvinth
- Sugarcane Breeding Institute, Coimbatore 641007, India
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Christy LA, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N. Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). PLANT CELL REPORTS 2009; 28:175-184. [PMID: 18985354 DOI: 10.1007/s00299-008-0628-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/08/2008] [Accepted: 10/12/2008] [Indexed: 05/27/2023]
Abstract
The inhibitory activity of bovine pancreatic trypsin inhibitor (aprotinin), a natural polypeptide and a proteinase inhibitor, was demonstrated on gut proteinases of three lepidopteran borers of sugarcane using commercially available aprotinin. A synthetic gene coding for aprotinin, designed and codon optimized for better expression in plant system (Shantaram 1999), was transferred to two sugarcane cultivars namely CoC 92061 and Co 86032 through particle bombardment. Aprotinin gene expression was driven by maize ubiquitin promoter and the plant selection marker used was hygromycin resistance. The integration, expression and functionality of the transgene was confirmed by Southern, Western and insect bioassay, respectively. Southern analysis showed two to four integration sites of the transgene in the transformed plants. Independent transgenic events showed varied levels of transgene expression resulting in different levels (0.16-0.50%) of aprotinin. In in vivo bioassay studies, larvae of top borer Scirpophaga excerptalis Walker (Lepidoptera: Pyralidae) fed on transgenics showed significant reduction in larval weight which indicated impairment of their development. Results of this study show the possibility of deploying aprotinin gene for the development of transgenic sugarcane cultivars resistant to top borer.
Collapse
|
22
|
Ribeiro CW, Soares-Costa A, Falco MC, Chabregas SM, Ulian EC, Cotrin SS, Carmona AK, Santana LA, Oliva MLV, Henrique-Silva F. Production of a His-tagged canecystatin in transgenic sugarcane and subsequent purification. Biotechnol Prog 2008; 24:1060-6. [DOI: 10.1002/btpr.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, Souza GM. Sugarcane functional genomics: gene discovery for agronomic trait development. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:458732. [PMID: 18273390 PMCID: PMC2216073 DOI: 10.1155/2008/458732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 11/21/2007] [Indexed: 05/04/2023]
Abstract
Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs.
Collapse
Affiliation(s)
- M. Menossi
- Departmento de Genetica e Evolução IB-Unicamp, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas,
C.P. 6010, CEP 13083-970 Campinas, SP, Brazil
| | - M. C. Silva-Filho
- Departamento de Genética,
Escola Superior de Agricultura Luiz de Queiroz,
Universidade de São Paulo,
Av. Pádua Dias, 11, C.P. 83, 13400-970 Piracicaba, SP, Brazil
| | - M. Vincentz
- Departmento de Genetica e Evolução IB-Unicamp, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas,
C.P. 6010, CEP 13083-970 Campinas, SP, Brazil
| | - M.-A. Van-Sluys
- Departamento de Botânica, Instituto de Biociências,
Universidade de São Paulo,
Rua do Matão 277, 05508-090 São Paulo, SP, Brazil
| | - G. M. Souza
- Departamento de Bioquímica,
Instituto de Química,
Universidade de São Paulo,
Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
- *G. M. Souza:
| |
Collapse
|
24
|
Jain M, Chengalrayan K, Abouzid A, Gallo M. Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. PLANT CELL REPORTS 2007; 26:581-90. [PMID: 17149641 DOI: 10.1007/s00299-006-0244-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/07/2006] [Accepted: 09/04/2006] [Indexed: 05/12/2023]
Abstract
For the first time, the phosphomannose isomerase (PMI, EC 5.3.1.8)/mannose-based "positive" selection system has been used to obtain genetically engineered sugarcane (Saccharum spp. hybrid var. CP72-2086) plants. Transgenic lines of sugarcane were obtained following biolistic transformation of embryogenic callus with an untranslatable sugarcane mosaic virus (SCMV) strain E coat protein (CP) gene and the Escherichia coli PMI gene manA, as the selectable marker gene. Postbombardment, transgenic callus was selectively proliferated on modified MS medium containing 13.6 microM 2,4-D, 20 g l(-1) sucrose and 3 g l(-1) mannose. Plant regeneration was obtained on MS basal medium with 2.5 microM TDZ under similar selection conditions, and the regenerants rooted on MS basal medium with 19.7 microM IBA, 20 g l(-1) sucrose, and 1.5 g l(-1) mannose. An increase in mannose concentration from permissive (1.5 g l(-1)) to selective (3 g l(-1)) conditions after 3 weeks improved the overall transformation efficiency by reducing the number of selection escapes. Thirty-four vigorously growing putative transgenic plants were successfully transplanted into the greenhouse. PCR and Southern blot analyses showed that 19 plants were manA-positive and 15 plants were CP-positive, while 13 independent transgenics contained both transgenes. Expression of manA in the transgenic plants was evaluated using a chlorophenol red assay and enzymatic analysis.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Agronomy, Genetics Institute, University of Florida, Gainesville, FL 32611-0300, USA
| | | | | | | |
Collapse
|