1
|
Savov S, Marinova B, Teofanova D, Savov M, Odjakova M, Zagorchev L. Parasitic Plants-Potential Vectors of Phytopathogens. Pathogens 2024; 13:484. [PMID: 38921782 PMCID: PMC11207070 DOI: 10.3390/pathogens13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Parasitic plants represent a peculiar group of semi- or fully heterotrophic plants, possessing the ability to extract water, minerals, and organic compounds from other plants. All parasitic plants, either root or stem, hemi- or holoparasitic, establish a vascular connection with their host plants through a highly specialized organ called haustoria. Apart from being the organ responsible for nutrient extraction, the haustorial connection is also a highway for various macromolecules, including DNA, proteins, and, apparently, phytopathogens. At least some parasitic plants are considered significant agricultural pests, contributing to enormous yield losses worldwide. Their negative effect is mainly direct, by the exhaustion of host plant fitness and decreasing growth and seed/fruit formation. However, they may pose an additional threat to agriculture by promoting the trans-species dispersion of various pathogens. The current review aims to summarize the available information and to raise awareness of this less-explored problem. We further explore the suitability of certain phytopathogens to serve as specific and efficient methods of control of parasitic plants, as well as methods for control of the phytopathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria; (S.S.); (B.M.); (D.T.); (M.S.); (M.O.)
| |
Collapse
|
2
|
Zenteno‐Alegría CO, Yarzábal Rodríguez LA, Ciancas Jiménez J, Álvarez Gutiérrez PE, Gunde‐Cimerman N, Batista‐García RA. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol 2024; 17:e14439. [PMID: 38478382 PMCID: PMC10936741 DOI: 10.1111/1751-7915.14439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 10/17/2024] Open
Abstract
Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.
Collapse
Affiliation(s)
- Claribel Orquídea Zenteno‐Alegría
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | | | | | | | - Nina Gunde‐Cimerman
- Departament of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Ramón Alberto Batista‐García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain
| |
Collapse
|
3
|
Lüth P, Nzioki HS, Sands Baker C, Sands DC. A microbial bioherbicide for Striga hermonthica control: production, development, and effectiveness of a seed coating agent. PEST MANAGEMENT SCIENCE 2024; 80:149-155. [PMID: 37139834 DOI: 10.1002/ps.7522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Witchweed (Striga hermonthica), also called striga, is a parasitic weed that causes high yield losses in maize on more than 200 000 ha in Kenya alone. A new commercial, biological herbicide developed in Kenya is able to control striga effectively. The product was approved for use by the Pest Control Products Board in Kenya in September, 2021. It is self-produced in villages using a secondary inoculum provided by a commercial company. The formulated product has some disadvantages, which are a complicated production process, a very short shelf life and high application rate. Additionally, the product has to be applied manually and therefore can only be used in manual production, leaving out the opportunity for farmers using mechanization. For this reason, efforts have been made to formulate the active ingredient Fusarium oxysporum f. sp. strigae strain DSM 33471, as a powder and to use it as a seed coating agent. This article deals with the production of the Fusarium spore powder, its properties, its application to the seed, and its herbicidal effect demonstrated in the first two field trials. The F. oxysporum strain was originally isolated from a wilting striga plant in Kenya. The strain was virulence enhanced to over produce the amino acids leucine, methionine and tyrosine. These amino acids are responsible for a second mode of action apart from the wilting causing effect of the fungus on striga. Whereas leucine and tyrosine have a herbicidal effect, ethylene from methionine triggers the germination of striga seeds in the soil. Additionally, the strain has been improved to be resistant to the fungicide captan, which is commonly used to treat maize seed in Kenya. Seed coating tests conducted on 25 striga-infested small holder farms spread out in six counties of western Kenya reported yield increases of up to 88%. A second trial carried out by the Kenyan Agricultural and Livestock Research Organization showed a 93% reduction of emerged striga plants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Henry Sila Nzioki
- Agricultural Mechanization Research Institute, Kenya Agricultural and Livestock Research Organization, Machakos, Kenya
| | | | - David Chandler Sands
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
4
|
Bourdôt GW, Casonato SG. Broad host-range pathogens as bioherbicides: managing nontarget plant disease risk. PEST MANAGEMENT SCIENCE 2024; 80:28-34. [PMID: 36789792 DOI: 10.1002/ps.7410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant pathogens with a broad host range are commercially more attractive as microbial bioherbicides than strictly host-specific pathogens as a result of the wider market potential of a product capable of controlling multiple species. However, the perceived spatiotemporal disease risk to nontarget plants is a barrier to their adoption for weed control. We consider two approaches to managing this risk. First, we consider safety zones and withholding periods for bioherbicide treatment sites. These must ensure inoculum spreading from, or surviving at the site, exposes nontarget plants to no more inoculum than from natural sources. They can be determined using simple dispersal models. We show that a ratio of added:natural inoculum of 1.0 is biologically reasonable as an 'acceptable risk' and a sound basis for safety zones and withholding periods. These would be analogous to the 'conditions of use' for synthetic chemical herbicides aimed at minimizing collateral damage to susceptible plants from spray drift and persistent soil residues. Second, weed-specific isolates of broad host-range pathogens may avoid the need for safety zones and withholding periods. Such isolates have been found in many broad host-range pathogen species. Their utilization as bioherbicides may more easily meet the requirements of regulators. Mixtures of different weed-specific isolates of a pathogen could provide bioherbicides with commercially attractive spectrums of weed control activity. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Graeme W Bourdôt
- Weeds Pests and Biosecurity Team, AgResearch Limited, Christchurch, New Zealand
| | - Seona G Casonato
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
5
|
Baker CS, Sands DC, Nzioki HS. The Toothpick Project: commercialization of a virulence-selected fungal bioherbicide for Striga hermonthica (witchweed) biocontrol in Kenya. PEST MANAGEMENT SCIENCE 2024; 80:65-71. [PMID: 37682845 DOI: 10.1002/ps.7761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
The high-level view of global food systems identifies three all-encompassing barriers to the adoption of food systems solutions: knowledge, policy, and finance. These barriers, and the siloed characteristics of each of these, have hindered the development and adoption of microbial herbicides. How knowledge, policy, and finance are related to the Toothpick Project's path of commercializing a new bioherbicide, early in the scope of the industry, is discussed here. The Toothpick Project's innovation, developed over four decades and commercialized in 2021, uses strains of Fusarium oxysporum f.sp. strigae selected for overproduction and excretion of specific amino acids, killing the parasitic weed Striga hermonthica (Striga or witchweed), Africa's worst pest threat to food security. Historically, bioherbicides have not been a sufficient alternative to the dominant use of synthetic chemical herbicides. To be used safely as bioherbicides, plant pathogens need to be host specific, non-toxic, and yet sufficiently virulent to control a specific weed. For commercialization, bioherbicides must be affordable and require a sufficient shelf life for distribution. Given the current triple storm encountered by the chemical herbicide industry (herbicide-resistant weeds, lawsuits, and consumer pushback), there exists an opportunity to use certain plant pathogens as bioherbicides by enhancing their virulence. By discussing barriers in the scope of knowledge, policy, and finance in the development of the Toothpick Project's new microbial bioherbicide, we hope to help others to anticipate the challenges and provide change-leaders, particularly in policy and finance, a ground level perspective of bioherbicide development. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - David C Sands
- Department of Plant Pathology, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
6
|
Fernández-Aparicio M, Delavault P, Timko MP. Management of Infection by Parasitic Weeds: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1184. [PMID: 32932904 PMCID: PMC7570238 DOI: 10.3390/plants9091184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022]
Abstract
Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, when parasitic plants become established in low biodiversified agroecosystems, their persistence causes tremendous yield losses rendering agricultural lands uncultivable. The control of parasitic weeds is challenging because there are few sources of crop resistance and it is difficult to apply controlling methods selective enough to kill the weeds without damaging the crop to which they are physically and biochemically attached. The management of parasitic weeds is also hindered by their high fecundity, dispersal efficiency, persistent seedbank, and rapid responses to changes in agricultural practices, which allow them to adapt to new hosts and manifest increased aggressiveness against new resistant cultivars. New understanding of the physiological and molecular mechanisms behind the processes of germination and haustorium development, and behind the crop resistant response, in addition to the discovery of new targets for herbicides and bioherbicides will guide researchers on the design of modern agricultural strategies for more effective, durable, and health compatible parasitic weed control.
Collapse
Affiliation(s)
- Mónica Fernández-Aparicio
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (CSIC), 14004 Córdoba, Spain
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, 44035 Nantes, France;
| | - Michael P. Timko
- Department of Biology University of Virginia, Charlottesville, VA 22904-4328, USA;
| |
Collapse
|
7
|
Disease severity enhancement by an esterase from non-phytopathogenic yeast Pseudozyma antarctica and its potential as adjuvant for biocontrol agents. Sci Rep 2018; 8:16455. [PMID: 30405193 PMCID: PMC6220330 DOI: 10.1038/s41598-018-34705-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022] Open
Abstract
The phylloplane yeast Pseudozyma antarctica secretes an esterase, named PaE, and xylanase when cultivated with xylose. We previously observed that the lipophilic layer of Micro-Tom tomato leaves became thinner after the culture filtrate treatment. The leaves developed reduced water-holding ability and became wilted. In this study, the purified enzymes were spotted on Micro-Tom leaves. PaE, but not xylanase, thinned the lipophilic layer of leaves and decreased leaf resistance to the phytopathogenic fungus Botrytis cinerea. Disease severity increased significantly in detached leaves and potted plants treated with the culture filtrate and B. cinerea spores compared with those treated with inactivated enzyme and B. cinerea alone. Spore germination ratios, numbers of penetrating fungal hyphae in the leaves, and fungal DNA contents also increased significantly on the detached leaves. Japanese knotweed (Fallopia japonica), a serious invasive alien weed in Europe and North America, also became susceptible to infection by the rust pathogen Puccinia polygoni-amphibii var. tovariae following the culture filtrate treatment. The culture filtrate treatment increased disease development in plants induced by both phytopathogenic fungi. Our results suggest that P. antarctica culture filtrate could be used as an adjuvant for sustainable biological weed control using phytopathogenic fungi.
Collapse
|
8
|
Fernández-Aparicio M, Bernard A, Falchetto L, Marget P, Chauvel B, Steinberg C, Morris CE, Gibot-Leclerc S, Boari A, Vurro M, Bohan DA, Sands DC, Reboud X. Investigation of Amino Acids As Herbicides for Control of Orobanche minor Parasitism in Red Clover. FRONTIERS IN PLANT SCIENCE 2017; 8:842. [PMID: 28588599 PMCID: PMC5438991 DOI: 10.3389/fpls.2017.00842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/05/2017] [Indexed: 05/17/2023]
Abstract
Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice. Orobanche minor is a weed that parasitizes red clover. O. minor germination is stimulated by clover root exudates. The subsequent seedling is an obligated parasite that must attach quickly to the clover root to withdraw its nutrients. Early development of O. minor is vulnerable to amino acid inhibition and therefore, a series of in vitro, rhizotron, and field experiments were conducted to investigate the potential of amino acids to inhibit O. minor parasitism. In in vitro experiments it was found that among a collection of 20 protein amino acids, lysine, methionine and tryptophan strongly interfere with O. minor early development. Field research confirmed their inhibitory effect but revealed that methionine was more effective than lysine and tryptophan, and that two successive methionine applications at 308 and 543 growing degree days inhibited O. minor emergence in red clover up to 67%. We investigated additional effects with potential to influence the practical use of amino acids against broomrape weeds, whether the herbicidal effect may be reversible by other amino acids exuded by host plants or may be amplified by inducing host resistance barriers against O. minor penetration. This paper suggests that amino acids may have the potential to be integrated into biorational programs of broomrape management.
Collapse
Affiliation(s)
- Mónica Fernández-Aparicio
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijon, France
- CSIC, Institute for Sustainable AgricultureCórdoba, Spain
- *Correspondence: Mónica Fernández-Aparicio,
| | | | | | - Pascal Marget
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijon, France
- INRA, UE0115 Domaine Expérimental d’Epoisses,Bretenière, France
| | - Bruno Chauvel
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijon, France
| | | | | | - Angela Boari
- CNR, Institute of Sciences of Food ProductionBari, Italy
| | - Maurizio Vurro
- CNR, Institute of Sciences of Food ProductionBari, Italy
| | - David A. Bohan
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - David C. Sands
- Department of Plant Sciences & Plant Pathology, Montana State University, BozemanMT, United States
| | - Xavier Reboud
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijon, France
| |
Collapse
|
9
|
Shilo T, Zygier L, Rubin B, Wolf S, Eizenberg H. Mechanism of glyphosate control of Phelipanche aegyptiaca. PLANTA 2016; 244:1095-1107. [PMID: 27440121 DOI: 10.1007/s00425-016-2565-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/28/2016] [Indexed: 05/28/2023]
Abstract
MAIN CONCLUSION Despite its total reliance on its host plant, the holoparasite Phelipanche aegyptiaca suffers from a deficiency of aromatic amino acids upon exposure to glyphosate. The herbicide glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the biosynthesis of aromatic amino acids. However, the functionality of the EPSPS pathway in the obligate root holoparasite Phelipanche aegyptiaca is not straightforward because of the parasite's total dependence on the host plant. Despite the importance of glyphosate as a means of controlling P. aegyptiaca, the mechanism of action of the herbicide in this parasite is not clearly understood. We characterized glyphosate control of P. aegyptiaca by using a glyphosate-resistant tomato (GRT) genotype as the host plant and evaluating the activity of EPSPS and the levels of free aromatic amino acids in the parasite. The viability of the parasite's tissues deteriorated within the first 40 h after treatment (HAT) with glyphosate. In parallel, shikimate accumulation in the parasite was first detected at 24 HAT and increased over time. However, shikimate levels in the GRT host did not increase, indicating that the host was indeed glyphosate tolerant. Free phenylalanine and tyrosine levels decreased by 48 HAT in the parasite, indicating a deficiency of aromatic amino acids. The use of GRT as the host enabled us to observe, in an in situ experimental system, both endogenous EPSPS inhibition and a deficiency of aromatic amino acids in the parasite. We thus provided evidence for the presence of an active EPSPS and aromatic amino acid biosynthesis pathway in P. aegyptiaca and pinpointed this pathway as the target of glyphosate action in this parasite.
Collapse
Affiliation(s)
- Tal Shilo
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Newe Ya'ar Research Center, Ramat Yishay, Israel.
- The Robert H. Smith Institute of Plant Sciences and Genetics, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Lilach Zygier
- The Robert H. Smith Institute of Plant Sciences and Genetics, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Baruch Rubin
- The Robert H. Smith Institute of Plant Sciences and Genetics, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shmuel Wolf
- The Robert H. Smith Institute of Plant Sciences and Genetics, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
10
|
Zwanenburg B, Mwakaboko AS, Kannan C. Suicidal germination for parasitic weed control. PEST MANAGEMENT SCIENCE 2016; 72:2016-2025. [PMID: 26733056 DOI: 10.1002/ps.4222] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 05/10/2023]
Abstract
Parasitic weeds of the genera Striga and Orobanche spp. cause severe yield losses in agriculture, especially in developing countries and the Mediterranean. Seeds of these weeds germinate by a chemical signal exuded by the roots of host plants. The radicle thus produced attaches to the root of the host plant, which can then supply nutrients to the parasite. There is an urgent need to control these weeds to ensure better agricultural production. The naturally occurring chemical signals are strigolactones (SLs), e.g. strigol and orobanchol. One option to control these weeds involves the use of SLs as suicidal germination agents, where germination takes place in the absence of a host. Owing to the lack of nutrients, the germinated seeds will die. The structure of natural SLs is too complex to allow multigram synthesis. Therefore, SL analogues are developed for this purpose. Examples are GR24 and Nijmegen-1. In this paper, the SL analogues Nijmegen-1 and Nijmegen-1 Me were applied in the field as suicidal germination agents. Both SL analogues were formulated using an appropriate EC-approved emulsifier (polyoxyethylene sorbitol hexaoleate) and applied to tobacco (Nicotiana tabacum L.) fields infested by Orobanche ramosa L. (hemp broomrape), following a strict protocol. Four out of 12 trials showed a reduction in broomrape of ≥95%, two trials were negative, two showed a moderate result, one was unclear and in three cases there was no Orobanche problem in the year of the trials. The trial plots were ca 2000 m2 ; half of that area was treated with stimulant emulsion, the other half was not treated. The optimal amount of stimulant was 6.25 g ha-1 . A preconditioning prior to the treatment was a prerequisite for a successful trial. In conclusion, the suicidal germination approach to reducing O. ramosa in tobacco fields using formulated SL analogues was successful. Two other options for weed control are discussed: deactivation of stimulants prior to action and biocontrol by Fusarium oxysporum. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Cluster of Organic Chemistry, Huygens Building, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands.
| | - Alinanuswe S Mwakaboko
- Cluster of Organic Chemistry, Huygens Building, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
- Department of Chemistry, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Chinnaswamy Kannan
- Cluster of Organic Chemistry, Huygens Building, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
- ICAR - Indian Institute of Rice Research, Indian Council of Agricultural Research, Ministery of Agriculture, Government of India, Rajendra Nagar, Hydrabad, India
| |
Collapse
|
11
|
Nzioki HS, Oyosi F, Morris CE, Kaya E, Pilgeram AL, Baker CS, Sands DC. Striga Biocontrol on a Toothpick: A Readily Deployable and Inexpensive Method for Smallholder Farmers. FRONTIERS IN PLANT SCIENCE 2016; 7:1121. [PMID: 27551284 PMCID: PMC4976096 DOI: 10.3389/fpls.2016.01121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/13/2016] [Indexed: 05/28/2023]
Abstract
Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize. This overall strategy resulted in an average of >50% increased maize yield in the March to June rains season and >40% in the September to December rains season. Integration of this enhanced plant pathogen to Striga management in maize can significantly increase the maize yield of smallholder farmers in Kenya.
Collapse
Affiliation(s)
- Henry S. Nzioki
- Kenya Agriculture and Livestock Research OrganizationMachakos, Kenya
| | | | - Cindy E. Morris
- Plant Pathology, INRA-PACAAvignon, France
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
| | - Eylul Kaya
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
| | - Alice L. Pilgeram
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
| | | | - David C. Sands
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
12
|
Fernández-Aparicio M, Reboud X, Gibot-Leclerc S. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:135. [PMID: 26925071 PMCID: PMC4759268 DOI: 10.3389/fpls.2016.00135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/12/2016] [Indexed: 05/20/2023]
Abstract
Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrapes are in current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree. We reviewed relevant facts about the biology and physiology of broomrape weeds and the major feasible control strategies. The points of vulnerability of some underground events, key for their parasitism such as crop-induced germination or haustorial development are reviewed as inhibition targets of the broomrape-crop association. Among the reviewed strategies are those aimed (1) to reduce broomrape seed bank viability, such as fumigation, herbigation, solarization and use of broomrape-specific pathogens; (2) diversion strategies to reduce the broomrape ability to timely detect the host such as those based on promotion of suicidal germination, on introduction of allelochemical interference, or on down-regulating host exudation of germination-inducing factors; (3) strategies to inhibit the capacity of the broomrape seedling to penetrate the crop and connect with the vascular system, such as biotic or abiotic inhibition of broomrape radicle growth and crop resistance to broomrape penetration either natural, genetically engineered or elicited by biotic- or abiotic-resistance-inducing agents; and (4) strategies acting once broomrape seedling has bridged its vascular system with that of the host, aimed to impede or to endure the parasitic sink such as those based on the delivery of herbicides via haustoria, use of resistant or tolerant varieties and implementation of cultural practices improving crop competitiveness.
Collapse
|
13
|
Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A. Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. PLANT DISEASE 2016; 100:10-24. [PMID: 30688570 DOI: 10.1094/pdis-05-15-0574-fe] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Whether modern agriculture without conventional pesticides will be possible or not is a matter of debate. The debate is meaningful within the context of rising health and environmental awareness on one hand, and the global challenge of feeding a steadily growing human population on the other. Conventional pesticide use has come under pressure in many countries, and some European Union (EU) Member States have adopted policies for risk reduction following Directive 2009/128/EC, the sustainable use of pesticides. Highly diverse crop production systems across Europe, having varied geographic and climatic conditions, increase the complexity of European crop protection. The economic competitiveness of European agriculture is challenged by the current legislation, which banned the use of many previously authorized pesticides that are still available and applied in other parts of the world. This challenge could place EU agricultural production at a disadvantage, so EU farmers are seeking help from the research community to foster and support integrated pest management (IPM). Ensuring stable crop yields and quality while reducing the reliance on pesticides is a challenge facing the farming community is today. Considering this, we focus on several diverse situations in European agriculture in general and in European crop protection in particular. We emphasize that the marked biophysical and socio-economic differences across Europe have led to a situation where a meaningful reduction in pesticide use can hardly be achieved. Nevertheless, improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction. In this overview, the current pest problems and their integrated management are discussed in the context of specific geographic regions of Europe, with a particular emphasis on reduced pesticide use. We conclude that there are opportunities for reduction in many parts of Europe without significant losses in crop yields.
Collapse
Affiliation(s)
| | - Silke Dachbrodt-Saaydeh
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Stahnsdorfer Damm 81, 14532 Kleinmachnow, Germany
| | - Per Kudsk
- Aarhus University, Department of Agroecology, Forsoegsvej 1, 4200 Slagelse 14 Denmark
| | - Antoine Messéan
- INRA, UAR 1240 Eco-Innov, BP 01, 78850 Thiverval-Grignon, France
| |
Collapse
|
14
|
McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI. 4-Formylaminooxyvinylglycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. JOURNAL OF NATURAL PRODUCTS 2010; 73:1853-7. [PMID: 20979386 PMCID: PMC3049220 DOI: 10.1021/np1004856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A new oxyvinylglycine has been identified as a naturally occurring herbicide that irreversibly arrests germination of the seeds of grassy weeds, such as annual bluegrass (Poa annua), without significantly affecting the growth of established grass seedlings and mature plants or germination of the seeds of broadleaf plant species (dicots). Previously, Pseudomonas fluorescens WH6 and over 20 other rhizosphere bacteria were isolated and selected for their ability to arrest germination of P. annua seeds. The germination-arrest factor (GAF, 1) responsible for this developmentally specific herbicidal action has now been isolated from the culture filtrate of P. fluorescens WH6. Purification of this highly polar, low molecular weight natural product allowed its structure to be assigned as 4-formylaminooxy-l-vinylglycine on the basis of NMR spectroscopic and mass spectrometric data, in combination with D/L-amino acid oxidase reactions to establish the absolute configuration. Assay results for P. annua inhibition by related compounds known to regulate plant growth are presented, and a cellular target for 1 is proposed. Furthermore, using bioassays, TLC, and capillary NMR spectroscopy, it has been shown that GAF (1) is secreted by all other herbicidally active rhizosphere bacteria in our collection.
Collapse
Affiliation(s)
- Kerry L McPhail
- College of Pharmacy, 203 Pharmacy Building, Oregon State University, Corvallis, Oregon 97331, United States.
| | | | | | | | | |
Collapse
|
15
|
Venne J, Beed F, Avocanh A, Watson A. Integrating Fusarium oxysporum f. sp. strigae into cereal cropping systems in Africa. PEST MANAGEMENT SCIENCE 2009; 65:572-580. [PMID: 19288458 DOI: 10.1002/ps.1741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Striga hermonthica (Del.) Benth. (witchweed) poses the greatest biological constraint to food production in sub-Saharan Africa (SSA). Control options for Striga are currently largely ineffective or unavailable to farmers, and other management possibilities are urgently needed. Biological control obviates some of the problems of several of the other techniques and provides a management option that is durable and environmentally responsive. The efficacy of S. hermonthica control using different formulations of three isolates of Fusarium oxysporum Schlecht. emend. Synder & Hans f. sp. strigae was tested on Striga-resistant and Striga-susceptible varieties of sorghum and maize under African field conditions for the first time. RESULTS Isolates PSM197 and Foxy 2 were effective in witchweed repression, especially when applied as pesta granules. Isolate M12-4A was less effective under the field conditions investigated. Application of the fungi was generally more beneficial in maize than in sorghum for the varieties tested. Application of the biocontrol agent caused significant decreases in the number of flowering Striga plants, and hence deposition of seeds with impact of enhancing future crop yield. CONCLUSIONS Synergistic effects between the Striga-resistant maize line and Fusarium oxysporum f. sp strigae led to over 90% reduction in Striga emergence. These results will further encourage the distribution of the isolates tested or selection of country-specific relatives as viable and environmentally safe biocontrol agents to be used against Striga. Pesta was the most effective formulation, while seed coating may be more cost effective.
Collapse
Affiliation(s)
- Julien Venne
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | | | | |
Collapse
|
16
|
Rubiales D, Fernández-Aparicio M, Pérez-de-Luque A, Castillejo MA, Prats E, Sillero JC, Rispail N, Fondevilla S. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). PEST MANAGEMENT SCIENCE 2009; 65:553-9. [PMID: 19253919 DOI: 10.1002/ps.1740] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/03/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pea cultivation is strongly hampered in Mediterranean and Middle East farming systems by the occurrence of Orobanche crenata Forsk. Strategies of control have been developed, but only marginal successes have been achieved. Most control methods are either unfeasible, uneconomical, hard to achieve or result in incomplete protection. The integration of several control measures is the most desirable strategy. RESULTS [corrected] Recent developments in control are presented and re-evaluated in light of recent developments in crop breeding and molecular genetics. These developments are placed within a framework that is compatible with current agronomic practices. CONCLUSION The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow. The application of knowledge gained from basic genomic research and genetic engineering will contribute to more rapid pea improvement for resistance against O. crenata and/or the herbicide.
Collapse
Affiliation(s)
- Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Apartado, Córdoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D. Structure and function of natural and synthetic signalling molecules in parasitic weed germination. PEST MANAGEMENT SCIENCE 2009; 65:478-91. [PMID: 19222046 DOI: 10.1002/ps.1706] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The structures of naturally occurring germination stimulants for seeds of the parasitic weeds Striga spp. and Orobanche spp. are described. The bioactiphore in this strigolactone family of stimulants is deduced from a structure-activity relationship and shown to reside in the CD part of the stimulant molecule. A molecular mechanism for the initial stages of seed germination is proposed. The influence of stereochemistry on the stimulant activity is significant. Combining this molecular information leads to a model for the design of synthetic strigolactones. Nijmegen-1 is a typical example of a highly active, newly designed synthetic stimulant. The occurrence of natural stimulants not belonging to the strigolactone family, such as cotylenin and parthenolide, is briefly described. The biosynthesis of natural strigolactones from beta-carotene is analysed in terms of isolated and predicted stimulants. This scheme will be helpful in the search for new strigolactones from root exudates. Protein fishing experiments to isolate and characterise the receptor protein using biotin-labelled GR 24 are described. A receptor protein of 60 kD was identified by this method. Nijmegen-1 has been tested as a suicidal germination agent in field trials on tobacco infested by Orobanche ramosa L. The preliminary results are highly rewarding. Finally, some future challenges in synthesis are described. These include synthesising new natural and synthetic stimulants and establishing the molecular connection between strigolactones as germination stimulants, as the branching factor for arbuscular mycorrhizal fungi and as an inhibitor of shoot branching.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, AJ Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Vurro M, Boari A, Evidente A, Andolfi A, Zermane N. Natural metabolites for parasitic weed management. PEST MANAGEMENT SCIENCE 2009; 65:566-71. [PMID: 19266492 DOI: 10.1002/ps.1742] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.
Collapse
Affiliation(s)
- Maurizio Vurro
- Istituto di Scienze delle Produzioni Alimentari, CNR, Bari, Italy.
| | | | | | | | | |
Collapse
|