1
|
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties. Int J Mol Sci 2023; 24:ijms24044072. [PMID: 36835477 PMCID: PMC9958630 DOI: 10.3390/ijms24044072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.
Collapse
|
2
|
Ciubotaru RM, Franceschi P, Vezzulli S, Zulini L, Stefanini M, Oberhuber M, Robatscher P, Chitarrini G, Vrhovsek U. Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112157. [PMID: 36798701 PMCID: PMC9927228 DOI: 10.3389/fpls.2023.1112157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Silvia Vezzulli
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
3
|
Yang D, Zhao B, Fan Z, Yu B, Zhang N, Li Z, Zhu Y, Zhou J, Kalinina TA, Glukhareva TV. Synthesis and Biological Activity of Novel Succinate Dehydrogenase Inhibitor Derivatives as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13185-13194. [PMID: 31697490 DOI: 10.1021/acs.jafc.9b05751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In searching for novel fungicidal leads, the novel bioactive succinate dehydrogenase inhibitor (SDHI) derivatives were designed and synthesized by the inversion of carbonyl and amide groups. Bioassay indicated that compound 5i stood out with a broad spectrum of in vitro activity against five fungi. Its EC50 value (0.73 μg/mL) was comparable to that of boscalid (EC50 of 0.51 μg/mL) and fluxapyroxad (EC50 of 0.19 μg/mL) against Sclerotinia sclerotiorum. For Rhizoctonia cerealis, 5i and 5p with EC50 values of 4.61 and 6.48 μg/mL, respectively, showed significantly higher activity than fluxapyroxad with the EC50 value of 16.99 μg/mL. In vivo fungicidal activity of 5i exhibited an excellent inhibitory rate (100%) against Puccinia sorghi at 50 μg/mL, while the positive control boscalid showed only a 70% inhibitory rate. Moreover, 5i showed promising fungicidal activity with a 60% inhibitory rate against Rhizoctonia solani at 1 μg/mL, which was better than that of boscalid (30%). Compound 5i possessed better in vivo efficacy against P. sorghi and R. solani than boscalid. Molecular docking showed that even the carbonyl oxygen atom of 5i was far from the pyrazole ring. It could also form hydrogen bonds toward the hydroxyl hydrogen and amino hydrogen of TYR58 and TRP173 on SDH, respectively, which consisted of the positive control fluxapyroxad. Fluorescence quenching analysis and SDH enzymatic inhibition studies also validated its mode of action. Our studies showed that 5i was worthy of further investigation as a promising fungicide candidate.
Collapse
Affiliation(s)
- Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Yilin Zhu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Jinghui Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , No. 94, Weijin Road , Tianjin 300071 , P. R. China
| | - Tatiana A Kalinina
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin , 620002 Ekaterinburg , Russia
| | - Tatiana V Glukhareva
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin , 620002 Ekaterinburg , Russia
| |
Collapse
|
4
|
Persistence, dissipation, and risk assessment of a combination formulation of trifloxystrobin and tebuconazole fungicides in/on tomato. Regul Toxicol Pharmacol 2019; 108:104471. [PMID: 31493441 DOI: 10.1016/j.yrtph.2019.104471] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
Abstract
Multi-locational supervised field trials were conducted in different agro-climatic regions in India to study dissipation of trifloxystrobin and tebuconazole in tomato after spraying a combination formulation (trifloxystrobin 25% + tebuconazole 50%, 75WG) at recommended doses: (i) single (trifloxystrobin 87.5 g a.i. ha-1 + tebuconazole 175 g a.i. ha-1) and (ii) double (trifloxystrobin 175 g a.i. ha-1 + tebuconazole 350 g a.i. ha-1). Fruit samples were extracted with ethyl acetate using a modified QuEChERS method. The residues (parent fungicides + metabolite) were analyzed and confirmed by GC-ECD and GC-MS, respectively. The half-life (t1/2) of trifloxystrobin and tebuconazole in tomato varied from 1.08 to 1.72 and 1.13 -to 1.64 days at single; and 1.27 to 2.13 and 1.24 to 1.96 days at double dose, respectively. Since maximum residue limit (MRL) at pre-harvest interval (PHI) of 5 days is impractical, as tomato is usually harvested and consumed almost everyday after the last spray, the risk assessment was performed at minimum PHI of 1 day. Accordingly, on the basis of supervised field trial data and using OECD MRL calculator, MRL of 0.5 and 1.5 mg kg-1 at single dose were proposed for trifloxystrobin and tebuconazole in/on tomato, respectively.
Collapse
|
5
|
Calonnec A, Jolivet J, Vivin P, Schnee S. Pathogenicity Traits Correlate With the Susceptible Vitis vinifera Leaf Physiology Transition in the Biotroph Fungus Erysiphe necator: An Adaptation to Plant Ontogenic Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:1808. [PMID: 30619392 PMCID: PMC6297386 DOI: 10.3389/fpls.2018.01808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/20/2018] [Indexed: 05/08/2023]
Abstract
How and when the pathogen cycle is disrupted during plant development is crucial for harnessing ontogenic resistance in sustainable agriculture. Ontogenic resistance against powdery mildew (Erysiphe necator) was quantified on Vitis vinifera. Shoots were sampled in the vineyard at several dates during seasonal growth and processed in the laboratory under controlled conditions. Experiments were conducted on two susceptible Vitis vinifera Cabernet Sauvignon and Merlot. The process of leaf ontogenic resistance was investigated by measuring three quantitative traits of pathogenicity: the infection efficiency, sporulation and mycelium growth. Morphological and physiological plant indicators were used to identify leaf changes that resulted in ontogenic resistance and to predict pathogen variations that were linked to pathogenicity traits. The process of ontogenic resistance was established early in correspondence with the physiological transition of the leaf from sink to source status and was characterized by its increase in sugar content. The three traits of pathogenicity that we measured were affected, and their variation was strongly correlated with leaf age. Using leaf age, we were able to accurately predict the susceptibility of the leaf: a leaf aged, on average, 13.3 days had a very high probability (0.8) of being susceptible, while this probability decreased to 0.5 one week later. Sporulation was more closely correlated with variations in sugar and the infection efficiency in leaf water. The results for both cultivars were consistent. Ontogenic resistance on grapevine leaves is thus interpreted to be a strong, immutable physiological process that E. necator is able to circumvent by restricting its development to sink tissue. Future research should explore how this native plant resistance can be incorporated into grape management strategies to better control powdery mildew (PM) epidemics with reduced amounts of fungicides.
Collapse
Affiliation(s)
- Agnes Calonnec
- UMR1065 SAVE Santé et Agroecologie du Vignoble, INRA, ISVV, Villenave d'Ornon, France
| | - Jerome Jolivet
- UMR1065 SAVE Santé et Agroecologie du Vignoble, INRA, ISVV, Villenave d'Ornon, France
| | - Philippe Vivin
- EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, y, Villenave d'Ornon, France
| | - Sylvain Schnee
- UMR1065 SAVE Santé et Agroecologie du Vignoble, INRA, ISVV, Villenave d'Ornon, France
| |
Collapse
|
6
|
Elderfield JAD, Lopez-Ruiz FJ, van den Bosch F, Cunniffe NJ. Using Epidemiological Principles to Explain Fungicide Resistance Management Tactics: Why do Mixtures Outperform Alternations? PHYTOPATHOLOGY 2018; 108:803-817. [PMID: 29377769 DOI: 10.1094/phyto-08-17-0277-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Whether fungicide resistance management is optimized by spraying chemicals with different modes of action as a mixture (i.e., simultaneously) or in alternation (i.e., sequentially) has been studied by experimenters and modelers for decades. However, results have been inconclusive. We use previously parameterized and validated mathematical models of wheat Septoria leaf blotch and grapevine powdery mildew to test which tactic provides better resistance management, using the total yield before resistance causes disease control to become economically ineffective ("lifetime yield") to measure effectiveness. We focus on tactics involving the combination of a low-risk and a high-risk fungicide, and the case in which resistance to the high-risk chemical is complete (i.e., in which there is no partial resistance). Lifetime yield is then optimized by spraying as much low-risk fungicide as is permitted, combined with slightly more high-risk fungicide than needed for acceptable initial disease control, applying these fungicides as a mixture. That mixture rather than alternation gives better performance is invariant to model parameterization and structure, as well as the pathosystem in question. However, if comparison focuses on other metrics, e.g., lifetime yield at full label dose, either mixture or alternation can be optimal. Our work shows how epidemiological principles can explain the evolution of fungicide resistance, and also highlights a theoretical framework to address the question of whether mixture or alternation provides better resistance management. It also demonstrates that precisely how spray tactics are compared must be given careful consideration. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Collapse
Affiliation(s)
- James A D Elderfield
- First and fourth authors: Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom; second author: Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6845, Australia; and third author: Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Francisco J Lopez-Ruiz
- First and fourth authors: Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom; second author: Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6845, Australia; and third author: Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Frank van den Bosch
- First and fourth authors: Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom; second author: Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6845, Australia; and third author: Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Nik J Cunniffe
- First and fourth authors: Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom; second author: Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6845, Australia; and third author: Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| |
Collapse
|
7
|
Atak A, Akkurt M, Polat Z, Çelik H, Kahraman KA, Akgül DS, Özer N, Söylemezoğlu G, Şire GG, Eibach R. Susceptibility to downy mildew ( Plasmopara viticola) and powdery mildew ( Erysiphe necator) of different Vitiscultivars and genotypes. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2017. [DOI: 10.1051/ctv/20173201023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale? Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|