1
|
Wu R, Xu H, Zhou H, Yu P, Wen Z, Chen W. Electrochemically promoted thio-Michael addition of N-substituted maleimides to thiols in an aqueous medium. Org Biomol Chem 2024; 22:5401-5405. [PMID: 38874577 DOI: 10.1039/d4ob00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A stable and practical electrochemical method was developed to promote the thio-Michael addition of N-substituted maleimides to various thiols in an aqueous medium. This protocol was found to be excellent in terms of facile scale-up, oxidant- and catalyst-free conditions, broad substrate scopes, good functional group tolerance, and easily available substrates. Notably, a plausible reaction mechanism was derived from the results of a series of control experiments and CV studies, which indicated that a radical pathway might speed up the thio-Michael addition under constant current.
Collapse
Affiliation(s)
- Run Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Haojian Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Haiping Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Pingbing Yu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Zhaoyue Wen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Wei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| |
Collapse
|
2
|
Thimmappa BC, Salhi LN, Forget L, Sarrasin M, Bustamante Villalobos P, Henrissat B, Lang BF, Burger G. A biofertilizing fungal endophyte of cranberry plants suppresses the plant pathogen Diaporthe. Front Microbiol 2024; 15:1327392. [PMID: 38371935 PMCID: PMC10869595 DOI: 10.3389/fmicb.2024.1327392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Fungi colonizing plants are gaining attention because of their ability to promote plant growth and suppress pathogens. While most studies focus on endosymbionts from grasses and legumes, the large and diverse group of ericaceous plants has been much neglected. We recently described one of the very few fungal endophytes promoting the growth of the Ericaceae Vaccinium macrocarpon (American cranberry), notably the Codinaeella isolate EC4. Here, we show that EC4 also suppresses fungal pathogens, which makes it a promising endophyte for sustainable cranberry cultivation. By dual-culture assays on agar plates, we tested the potential growth suppression (or biocontrol) of EC4 on other microbes, notably 12 pathogenic fungi and one oomycete reported to infect not only cranberry but also blueberry, strawberry, tomato plants, rose bushes and olive trees. Under greenhouse conditions, EC4 protects cranberry plantlets infected with one of the most notorious cranberry-plant pathogens, Diaporthe vaccinii, known to cause upright dieback and berry rot. The nuclear genome sequence of EC4 revealed a large arsenal of genes potentially involved in biocontrol. About ∼60 distinct clusters of genes are homologs of secondary metabolite gene clusters, some of which were shown in other fungi to synthesize nonribosomal peptides and polyketides, but in most cases, the exact compounds these clusters may produce are unknown. The EC4 genome also encodes numerous homologs of hydrolytic enzymes known to degrade fungal cell walls. About half of the nearly 250 distinct glucanases and chitinases are likely involved in biocontrol because they are predicted to be secreted outside the cell. Transcriptome analysis shows that the expression of about a quarter of the predicted secondary-metabolite gene clusters and glucan and chitin-degrading genes of EC4 is stimulated when it is co-cultured with D. vaccinii. Some of the differentially expressed EC4 genes are alternatively spliced exclusively in the presence of the pathogen, altering the proteins' domain content and subcellular localization signal, thus adding a second level of proteome adaptation in response to habitat competition. To our knowledge, this is the first report of Diaporthe-induced alternative splicing of biocontrol genes.
Collapse
Affiliation(s)
- Bhagya C. Thimmappa
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Lila Naouelle Salhi
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Lise Forget
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Peniel Bustamante Villalobos
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B. Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
3
|
Bandehali-Naeini F, Tanbakouchian Z, Farajinia-Lehi N, Mayer N, Shiri M, Breugst M. Two distinct protocols for the synthesis of unsymmetrical 3,4-disubstituted maleimides based on transition-metal catalysts. Org Biomol Chem 2024; 22:380-387. [PMID: 38086692 DOI: 10.1039/d3ob01620j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two tandem catalytic systems are described for the synthesis of novel 3,4-disubstituted maleimides using the same Ugi adducts as starting materials. 4-Aryl-3-pyrrolyl- and 4-aryl-3-indolyl-maleimides were successfully obtained via a Pd(OAc)2/PPh3 based protocol. In contrast, maleimide-fused pyrrolo and indolo[1,2-a]quinolines were obtained in a complementary methodology using CuI/L-proline. These strategies involved a combination of benzylic amine oxidation, trans-amidation, intramolecular Knoevenagel condensation, and N-arylation reactions. Computational investigations provide further insights into this reaction sequence.
Collapse
Affiliation(s)
- Farzaneh Bandehali-Naeini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Zahra Tanbakouchian
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Noushin Farajinia-Lehi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Nicolas Mayer
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany.
| |
Collapse
|
4
|
Ma Z, Qiu S, Zhang D, Guo X, Lu Y, Fan Y, Chen X. Design, synthesis, and antifungal activity of novel dithiin tetracarboximide derivatives as potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2023; 79:1922-1930. [PMID: 36658467 DOI: 10.1002/ps.7369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides are an important class of agricultural fungicides with the advantages of high efficiency and a broad bactericidal spectrum. To pursue novel SDHIs, a series of N-substituted dithiin tetracarboximide derivatives were designed, synthesized, and characterized by 1 H NMR, 13 C NMR, and high resolution mass spectrum (HRMS). RESULTS These engineered compounds displayed potent fungicidal activity against phytopathogens, including Sclerotinia sclerotiorum, Botrytis cinerea, and Rhizoctonia solani, comparable with that of the commercial SDHI fungicide boscalid. In particular, compound 18 stood out with prominent activity against S. sclerotiorum with a half-maximal effective concentration (EC50 ) value of 1.37 μg ml-1 . Compound 1 exhibited the most potent antifungal activity against B. cinerea with EC50 values of 5.02 μg ml-1 . As for R. solani, 12 and 13 exhibited remarkably inhibitory activity with EC50 values of 4.26 and 5.76 μg ml-1 , respectively. In the succinate dehydrogenase (SDH) inhibition assay, 13 presented significant inhibitory activity with a half-maximal inhibitory concentration (IC50 ) value of 15.3 μm, which was approximately equivalent to that of boscalid (14.2 μm). Furthermore, molecular docking studies revealed that 13 could anchor in the binding site of SDH. CONCLUSION Taken together, results suggested that the dithiin tetracarboximide scaffold possessed a huge potential to be developed as novel fungicides and SDHIs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi Ma
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shuo Qiu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Dong Zhang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xinying Guo
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yongxian Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Ma Z, Qiu S, Chen HC, Zhang D, Lu YL, Chen XL. Maleimide structure: a promising scaffold for the development of antimicrobial agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:1-14. [PMID: 33511872 DOI: 10.1080/10286020.2021.1877675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Natural compounds bearing maleimide rings are a series of secondary metabolites derived from fungi/marine microorganisms, which are characterized by a general structure -CO-N(R)-CO-, and the R group is normally substituted with alkyl or aryl groups. Maleimide compounds show various biological activities such as antibacterial, antifungal, and anticancer activity. In this review, the broad-spectrum antimicrobial activities of 15 maleimide compounds from natural sources and 32 artificially synthesized maleimides were summarized, especially against Candida albicans, Sclerotinia sclerotiorum, and Staphylococcus aureus. It highlights that maleimide scaffold has tremendous potential to be utilized in the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Zhi Ma
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuo Qiu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Han-Chi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Zhang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue-Le Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Long Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Efficient production of valinomycin by the soil bacterium, Streptomyces sp. ZJUT-IFE-354. 3 Biotech 2022; 12:2. [PMID: 34926115 PMCID: PMC8639877 DOI: 10.1007/s13205-021-03055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023] Open
Abstract
A novel strain with antifungal activity against Sclerotinia sclerotiorum was isolated from soil, and identified as Streptomyces sp. ZJUT-IFE-354 using morphological and 16S rDNA sequence analysis. The bioactive metabolite produced by strain ZJUT-IFE-354 was identified and characterized as valinomycin by spectroscopic and chemical methods. The yield of valinomycin was 191.26 mg/L from the culture of Streptomyces sp. ZJUT-IFE-354, which was the highest yield to our knowledge. The in vitro antifungal activity of valinomycin against S. sclerotiorum was investigated as 0.056 ± 0.012 (EC50) and 0.121 ± 0.023 μg/mL (EC95), respectively, which was approximately 10.696- and 30.960-fold more active than that of carbendazim. The results from scanning electron microscopy, cell membrane permeability, and D-sorbitol and ergosterol assay indicated that valinomycin exerted the antifungal activity probably by increasing permeability of fungal cell membrane, leading to mycelial electrolyte leakage, and eventually resulting in the death of S. sclerotiorum. Thus, valinomycin may be a promising antifungal agent to control S. sclerotiorum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03055-5.
Collapse
|
7
|
Lu Y, Ye K, Zhu L, Cai X, Yang S, Li J, Jiang R, Fan Y, Chen X. Synthesis of a series of validoxylamine A esters and their biological activities. PEST MANAGEMENT SCIENCE 2021; 77:5109-5119. [PMID: 34240541 DOI: 10.1002/ps.6550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The worldwide reduction in food production due to pests and diseases is still an important challenge facing today. Validoxylamine A (VAA) is a natural polyhydroxyl compound derived from validamycin, acting as an efficient trehalase inhibitor with insecticidal and antifungal activities. To extend the application and discover green pesticide, a series of ester derivatives were prepared based on VAA as a lead compound. Their biological activities were investigated against three typically agricultural disease, Rhizoctonia solani, Sclerotinia sclerotiorum and Aphis craccivora. RESULTS This study involved 30 novel validoxylamine A fatty acid esters (VAFAEs) synthesized by Novozym 435 and they were characterized with high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and proton nuclear magnetic resonance (1 H-NMR). Of these 30 derivatives, most compounds showed improved antifungal activity, and 12 novel compounds showed improved insecticidal activity. When reacted with pentadecanoic acid, compound 14 showed the highest inhibitory activity against R. solani [median effective concentration (EC50 ) 0.01 μmol L-1 ], while the EC50 value of VAA was 34.99 μmol L-1 . Furthermore, 21 novel VAFAEs showed higher inhibitory activity against S. sclerotiorum. Validoxylamine A oleic acid ester, compound 21, exhibited the highest insecticidal activity against A. craccivora [median lethal concentration (LC50 ) 39.63 μmol L-1 ], while the LC50 value of Pymetrozine was 50.45 μmol L-1 , a commercialized pesticide against A. craccivora. CONCLUSION Combining our results, esterification of VAA by introducing different acyl donors was beneficial for the development of new eco-friendly drugs in the field of pesticides.
Collapse
Affiliation(s)
- Yuele Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Kang Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Linjing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoqing Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Shanshan Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianfeng Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruini Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yongxian Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaolong Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Das J, Dolui P, Ali W, Biswas JP, Chandrashekar HB, Prakash G, Maiti D. A direct route to six and seven membered lactones via γ-C(sp 3)-H activation: a simple protocol to build molecular complexity. Chem Sci 2020; 11:9697-9702. [PMID: 34094235 PMCID: PMC8162128 DOI: 10.1039/d0sc03144e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Lactones comprise a class of valuable compounds having biological as well as industrial importance. Development of a methodology to synthesize such molecules directly from readily available materials such as aliphatic carboxylic acid is highly desirable. Herein, we have reported synthesis of δ-lactones and ε-lactones via selective γ-C(sp3)–H activation. The γ-C–H bond containing aliphatic carboxylic acids provide six or seven membered lactones depending on the olefin partner in the presence of a palladium catalyst. A mechanistic investigation suggests that C–H activation is the rate-determining step. Further transformations of the lactones have been carried out to showcase the applicability of the present strategy. Six and seven membered lactones have been synthesized directly from readily available aliphatic acids.![]()
Collapse
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Pravas Dolui
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Wajid Ali
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | | | | | - Gaurav Prakash
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India .,Tokyo Tech World Research Hub Initiative(WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
9
|
Anti-Leishmanial and Cytotoxic Activities of a Series of Maleimides: Synthesis, Biological Evaluation and Structure-Activity Relationship. Molecules 2018; 23:molecules23112878. [PMID: 30400596 PMCID: PMC6278306 DOI: 10.3390/molecules23112878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
In the present study, 45 maleimides have been synthesized and evaluated for anti-leishmanial activities against L. donovani in vitro and cytotoxicity toward THP1 cells. All compounds exhibited obvious anti-leishmanial activities. Among the tested compounds, there were 10 maleimides with superior anti-leishmanial activities to standard drug amphotericin B, and 32 maleimides with superior anti-leishmanial activities to standard drug pentamidine, especially compounds 16 (IC50 < 0.0128 μg/mL) and 42 (IC50 < 0.0128 μg/mL), which showed extraordinary efficacy in an in vitro test and low cytotoxicities (CC50 > 10 μg/mL). The anti-leishmanial activities of 16 and 42 were 10 times better than that of amphotericin B. The structure and activity relationship (SAR) studies revealed that 3,4-non-substituted maleimides displayed the strongest anti-leishmanial activities compared to those for 3-methyl-maleimides and 3,4-dichloro-maleimides. 3,4-dichloro-maleimides were the least cytotoxic compared to 3-methyl-maleimides and 3,4-non-substituted maleimides. The results show that several of the reported compounds are promising leads for potential anti-leishmanial drug development.
Collapse
|
10
|
Influence of Solvent Environment on the Photophysical Properties of Maleamic Acid and Maleimide Derivatives. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0790-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Song PP, Zhao J, Liu ZL, Duan YB, Hou YP, Zhao CQ, Wu M, Wei M, Wang NH, Lv Y, Han ZJ. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives. PEST MANAGEMENT SCIENCE 2017; 73:94-101. [PMID: 27570117 DOI: 10.1002/ps.4422] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Osthol is a natural coumarin and lead compound that has been developed into commercial fungicides in China. Natural coumarins comprise five major subtypes: simple coumarins, linear furanocoumarins, angular furanocoumarins, linear pyranocoumarins and angular pyranocoumarins. Studies pertaining to the antifungal activities of linear pyranocoumarins are few, and no reports exist for the antifungal activities of angular pyranocoumarins. In order to discover more antifungal natural coumarins, we synthesised a series of simple natural coumarins and isolated several plant-based furanocoumarins and pyranocoumarins using previously described methods. The compounds were biologically evaluated against some plant fungal pathogens. RESULTS Several of the 35 coumarins evaluated here exhibited strong activities against specific fungal species, including compound 25 (Pd-D-V, a linear pyranocoumarin), compound 26 (libanorin, an angular furanocoumarin) and compound 34 (disenecioyl khellactone, an angular pyranocoumarin). Compound 25 exhibited a high activity against Sclerotinia sclerotiorum (EC50 = 13.2 µg mL-1 ); compound 34 displayed a strong antifungal activity against Botrytis cinerea (EC50 = 11.0 µg mL-1 ). CONCLUSION This study demonstrates that several natural coumarins (one linear pyranocoumarin and one angular pyranocoumarin in particular) exhibit strong antifungal activities. These results call for further studies, where these coumarins can be examined as potential lead compounds for developing novel antifungal agents. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ping-Ping Song
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Centre for Research and Development of Medicinal Plants, Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Jun Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Zong-Liang Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Centre of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Ministry of Education, Yantai, Shandong Province, China
| | - Ya-Bing Duan
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Yi-Ping Hou
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Chun-Qing Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Min Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Min Wei
- Jiangsu Centre for Research and Development of Medicinal Plants, Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Nian-He Wang
- Jiangsu Centre for Research and Development of Medicinal Plants, Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Ye Lv
- Jiangsu Centre for Research and Development of Medicinal Plants, Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Zhao-Jun Han
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| |
Collapse
|
12
|
Eloh K, Demurtas M, Mura MG, Deplano A, Onnis V, Sasanelli N, Maxia A, Caboni P. Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4876-4881. [PMID: 27249054 DOI: 10.1021/acs.jafc.6b02250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different maleimide derivatives were synthesized and assayed for their in vitro activity on the soil inhabiting, plant-parasitic nematode Meloidogyne incognita, also known as root-knot nematode. The compounds maleimide, N-ethylmaleimide, N-isopropylmaleimide, and N-isobutylmaleimide showed the strongest nematicidal activity on the second stage juveniles of the root-knot nematode with EC50/72h values of 2.6 ± 1.3, 5.1 ± 3.4, 16.2 ± 5.4, and 19.0 ± 9.0 mg/L, respectively. We also determined the nematicidal activity of copper sulfate, finding an EC50 value of 48.6 ± 29.8 mg/L. When maleimide at 1 mg/L was tested in combination with copper sulfate at 50 mg/L, we observed 100% mortality of the nematodes. We performed a GC-MS metabolomics analysis after treating nematodes with maleimide at 8 mg/L for 24 h. This analysis revealed altered fatty acids and diglyceride metabolites such as oleic acid, palmitic acid, and 1-monopalmitin. Our results suggest that maleimide may be used as a new interesting building block for developing new nematicides in combination with copper salts.
Collapse
Affiliation(s)
- Kodjo Eloh
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Monica Demurtas
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Manuel Giacomo Mura
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR , via G. Amendola 122/D, 70126 Bari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari , via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|