1
|
Makhmudiyarova NN, Ishmukhametova IR, Tyumkina TV, Mescheryakova ES, Dzhemileva L, D'yakonov V, Terent'ev AO, Dzhemilev UM. Multicomponent Assembly of Bicyclic Aza-peroxides Catalyzed by Samarium Complexes and Their Cytotoxic Activity. J Org Chem 2023; 88:11473-11485. [PMID: 37557189 DOI: 10.1021/acs.joc.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An original strategy toward bridged tetraoxazaspirobicycloalkanes was developed. The synthesis is based on a three-component condensation-cyclization reaction of primary arylamines with 1,1'-peroxybis (1-hydroperoxycycloalkanes) and pentane-1,5-dial catalyzed by Sm(NO3)3·6H2O. The structures and conformations of the products were determined by X-ray diffraction analysis and 1H and 13C NMR spectroscopy. High cytotoxic activity and biological potential toward ferroptosis induction were found for the synthesized bicyclic aza-peroxides.
Collapse
Affiliation(s)
- Nataliya N Makhmudiyarova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Irina R Ishmukhametova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Tatyana V Tyumkina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Ekaterina S Mescheryakova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Lilya Dzhemileva
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| | - Vladimir D'yakonov
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| | - Usein M Dzhemilev
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Silva JG, Borgati TF, Lopes SM, Heise N, Hoenke S, Csuk R, Barbosa LC. New amides derived from sclareolide as anticholinesterase agents. Bioorg Chem 2023; 130:106249. [DOI: 10.1016/j.bioorg.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
3
|
Makhmudiyarova NN, Ishmukhametova IR. Synthesis of New Macrocyclic Triperoxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Yaremenko IA, Radulov PS, Belyakova YY, Fomenkov DI, Tsogoeva SB, Terent’ev AO. Lewis Acids and Heteropoly Acids in the Synthesis of Organic Peroxides. Pharmaceuticals (Basel) 2022; 15:ph15040472. [PMID: 35455469 PMCID: PMC9025639 DOI: 10.3390/ph15040472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Organic peroxides are an important class of compounds for organic synthesis, pharmacological chemistry, materials science, and the polymer industry. Here, for the first time, we summarize the main achievements in the synthesis of organic peroxides by the action of Lewis acids and heteropoly acids. This review consists of three parts: (1) metal-based Lewis acids in the synthesis of organic peroxides; (2) the synthesis of organic peroxides promoted by non-metal-based Lewis acids; and (3) the application of heteropoly acids in the synthesis of organic peroxides. The information covered in this review will be useful for specialists in the field of organic synthesis, reactions and processes of oxygen-containing compounds, catalysis, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| | - Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Yulia Yu. Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Dmitriy I. Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen–Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia; (P.S.R.); (Y.Y.B.); (D.I.F.)
- Correspondence: (I.A.Y.); (A.O.T.)
| |
Collapse
|
5
|
Antolínez IV, Barbosa LCA, Borgati TF, Baldaia A, Ferreira SR, Almeida RM, Fujiwara RT. Tetroxanes as New Agents against Leishmania amazonensis. Chem Biodivers 2020; 17:e2000142. [PMID: 32294320 DOI: 10.1002/cbdv.202000142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is a neglected disease, caused by a parasite of Leishmania genus and widespread in the tropical and subtropical areas of the world. Currents drugs are limited due to their toxicity and parasite resistance. Therefore, the discovery of new treatment, more effective and less toxic, is urgent. In this study, we report the synthesis of six gem-dihydroperoxides (2a-2f), with yields ranging from 10 % to 90 %, utilizing a new methodology. The dihydroperoxides were converted into ten tetroxanes (3a-3j), among which six (3b, 3c, 3d, 3g, 3h and 3j) showed activity against intracellular amastigotes of Leishmania amazonensis. The cytotoxicity of all compounds was also evaluated against canine macrophages (DH82), human hepatoma (HepG2) and monkey renal cells (BGM). Most compounds were more active and less toxic than potassium antimonyl tartrate trihydrate, used as positive control. Amongst all tetroxanes, 3b (IC50 =0.64 μm) was the most active, being more selective than positive control in relation to DH82, HepG2 and BGM cells. In summary, the results revealed a hit compound for the development of new drugs to treat leishmaniasis.
Collapse
Affiliation(s)
- Isabel V Antolínez
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Tatiane F Borgati
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil.,Department of Exact Sciences, State University of Minas Gerais, Av. Paraná, 3001, Jardim Belvedere I, Campus, Divinópolis, CEP, 35501-170, Divinópolis, MG, Brazil
| | - Almodvar Baldaia
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Sebastião R Ferreira
- Health Science Center, Universidade Federal do Sul da Bahia, Praça Joana Angélica, 250 São José, CEP, 45988-058, Teixeira de Freitas, BA, Brazil
| | - Raquel M Almeida
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Ricardo T Fujiwara
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Muniz DR, Garcia JS, Braga TC, de Fátima Â, Modolo LV. Pre-emergence application of (thio)urea analogues compromises the development of the weed species Bidens pilosa, Urochloa brizantha, and Urochloa decumbens. J Adv Res 2019; 17:95-102. [PMID: 31193357 PMCID: PMC6526195 DOI: 10.1016/j.jare.2019.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022] Open
Abstract
Invasive species (weeds) contribute to great losses in crop productivity, and one of the strategies for controlling their distribution in the field involves the use of herbicides. However, the development of new formulations for the control of weeds is challenged by environmental issues, increases in the resistance of weeds to herbicides, and poor selectivity of herbicides towards invasive species. Here, by using pre-emergence experiments, we assessed the phytotoxicity of two (thio)urea analogues (2A10 and 2B2) against the weed species Bidens pilosa (a dicot), Urochloa brizantha and Urochloa decumbens (monocots). Similar to diuron (400 µM), which is a commercial urea analogue herbicide, the urea analogue 2A10 (>200 µM) was lethal to B. pilosa. Although 2A10 failed to disrupt the germination of U. brizantha seeds, this compound (≥600 µM) inhibited the accumulation of chlorophyll a and b and carotenoids and resulted in the development of seedlings that presented relatively short roots and small, chlorotic leaves. Moreover, the thiourea analogue 2B2 (≥600 µM) reduced the germination percentage of U. decumbens seeds and delayed their germination, and at a concentration of 800 µM, this analogue impaired root growth and blocked the formation of lateral roots. The presence of an oxygen atom in the urea moiety of the 2A10 structure is critical for its marked activity against B. pilosa seeds, as 2B2 bears a sulphur atom instead and marginally inhibits seed germination. Neither 2A10 nor 2B2 was toxic to the non-weed species Lactuca sativa (lettuce; a dicot), and the latter even exerted beneficial effects by stimulating leaf expansion. Therefore, the evaluated (thio)urea analogues are promising for the design and development of new phytotoxic compounds for the pre-emergent control of the spread of B. pilosa (2A10) or the post-emergence control of U. brizantha (2A10) and U. decumbens (2B2).
Collapse
Affiliation(s)
- Dandara R. Muniz
- Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janaina S. Garcia
- Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Taniris C. Braga
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luzia V. Modolo
- Grupo de Estudos em Bioquímica de Plantas (GEBioPlan), Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Yaremenko IA, Gomes GDP, Radulov PS, Belyakova YY, Vilikotskiy AE, Vil’ VA, Korlyukov AA, Nikishin GI, Alabugin IV, Terent’ev AO. Ozone-Free Synthesis of Ozonides: Assembling Bicyclic Structures from 1,5-Diketones and Hydrogen Peroxide. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00130] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ivan A. Yaremenko
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow 143050, Russian Federation
| | - Gabriel dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32313, United States
| | - Peter S. Radulov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow 143050, Russian Federation
| | - Yulia Yu. Belyakova
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Anatoliy E. Vilikotskiy
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Vera A. Vil’
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow 143050, Russian Federation
| | - Alexander A. Korlyukov
- Russian Academy of Sciences, A. N. Nesmeyanov Institute of Organoelement Compounds, 28 Vavilov Street, Moscow 119991, Russian Federation
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russian Federation
| | - Gennady I. Nikishin
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32313, United States
| | - Alexander O. Terent’ev
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry Russian, 47 Leninsky Prospect, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow 143050, Russian Federation
| |
Collapse
|
8
|
Yamansarov EY, Khusnutdinova EF, Lobov AN, Kazakova OB, Suponitsky KY. Oxidation of 3β-Acetoxy-21β-acetyl-20β,28-epoxy-18α,19βH-ursane into Novel gem-Chloronitro- and 1,2,4,5-tetraoxane derivatives. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The first oxidative transformations of 3β-acetoxy-21β-acetyl-20β,28-epoxy-18α,19β H-ursane at the 21β-acetyl reaction center were performed. Ursane-type 1,2,4,5-tetraoxanes were synthesized by acid-catalyzed peroxy-condensation with cyclohexanone bis-hydroperoxide, and oxidation of the C(28)H2 group to C(28)=O was also observed. The ursane-bearing exogenous oximino-moiety was formed as a mixture of syn- and anti-isomers (1:1). Oxidative chlorination of oxime via NaCl/oxone led to the diastereomeric mixture of novel ( R) and ( S)- gem-chloronitro-derivatives (1:1). The stereochemistry of oximino- and gem-chloronitro- derivatives was established through X-ray analysis and NMR spectroscopy.
Collapse
Affiliation(s)
- Emil Yu. Yamansarov
- Ufa Institute of Chemistry, Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - El'mira F. Khusnutdinova
- Ufa Institute of Chemistry, Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - Alexander N. Lobov
- Ufa Institute of Chemistry, Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - Oxana B. Kazakova
- Ufa Institute of Chemistry, Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - Kirill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St, V-334, 119991, GSP-1, Moscow, Russian Federation
| |
Collapse
|
9
|
Gandhi H, O'Reilly K, Gupta MK, Horgan C, O'Leary EM, O'Sullivan TP. Advances in the synthesis of acyclic peroxides. RSC Adv 2017. [DOI: 10.1039/c6ra28489b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This review summarises the many developments in the synthesis of acyclic peroxides, with a particular focus on the past 20 years, and seeks to update organic chemists about these new approaches.
Collapse
Affiliation(s)
- H. Gandhi
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - K. O'Reilly
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - M. K. Gupta
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - C. Horgan
- Department of Chemistry
- University College Cork
- Cork
- Ireland
| | - E. M. O'Leary
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - T. P. O'Sullivan
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| |
Collapse
|