1
|
Dutta M, Chandra G. Octadecadienoate derivatives from Michelia champaca seed extract as potential larvicide and pupicide against Dengue vector Aedes albopictus. BMC Res Notes 2023; 16:212. [PMID: 37700379 PMCID: PMC10498518 DOI: 10.1186/s13104-023-06487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The present study was designed aiming at finding novel botanicals for controlling the vector population. Objective was to evaluate the larvicidal and pupicidal efficacies of crude and solvent extracts of Michelia champaca seed against the notorious dengue vector Aedes albopictus. 0.5% concentration of the crude extractive and 40 ppm concentration of ethyl acetate extractive were enough to execute 100% of larval mortality of all the instars after 72 h of exposure and the LC50 and LC90values (95% confidence level) of ethyl acetate extractive were 0.9880 ppm and 36.0491 ppm. In case of pupicidal bioassay, 100% mortality was observed at 200 ppm of ethyl acetate extract. Through TLC techniques, the bioactive compounds were isolated, which caused remarkable larval toxicity at 15 ppm concentration. Three-way factorial ANOVA analysis showed different concentrations, time intervals, and instars revealed a significant difference in larval death. FT-IR analysis revealed the presence several important functional groups. Presence of methyl 5,12-octadecadienoate and ethyl 9cis,11trans-octadecadienoate were ascertained by GC-MS analysis. The said bioactive compounds showed very low toxicity in non-target organisms such as damselfly (Ischnura sp.) and water bug (Diplonychus sp.) Thus, proclaiming the potentialities of Michelia champaca seed extracts as larvicidal and pupicidal agents against Ae. albopictus.
Collapse
Affiliation(s)
- Manali Dutta
- Mosquito, Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Goutam Chandra
- Mosquito, Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
2
|
Rants'o TA, Koekemoer LL, van Zyl RL. Bioactivity of select essential oil constituents against life stages of Anopheles arabiensis (Diptera: Culicidae). Exp Parasitol 2023:108569. [PMID: 37330107 DOI: 10.1016/j.exppara.2023.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 μM compared to propoxur (IC50: 5.13 ± 0.62 μM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 μM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 μM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.
Collapse
Affiliation(s)
- Thankhoe A Rants'o
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Hernandez-Rocha JV, Vásquez-Morales SG. The Potential of Magnolia spp. in the Production of Alternative Pest Control Substances. Molecules 2023; 28:4681. [PMID: 37375236 PMCID: PMC10303668 DOI: 10.3390/molecules28124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The irrational use of synthetic pesticides in agriculture has had negative impacts on ecosystems and contributed to environmental pollution. Botanical pesticides offer a clean biotechnological alternative to meet the agricultural challenges posed by pests and arthropods. This article proposes the use of fruit structures (fruit, peel, seed, and sarcotesta) of several Magnolia species as biopesticides. The potential of extracts, essential oils, and secondary metabolites of these structures for pest control is described. From 11 Magnolia species, 277 natural compounds were obtained, 68.7% of which were terpenoids, phenolic compounds, and alkaloids. Finally, the importance of a correct management of Magnolia species to ensure their sustainable use and conservation is stressed.
Collapse
Affiliation(s)
| | - Suria Gisela Vásquez-Morales
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
4
|
Lim H, Lee SY, Ho LY, Sit NW. Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. INSECTS 2023; 14:512. [PMID: 37367328 DOI: 10.3390/insects14060512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability to ecological conditions. In this study, we investigated the larvicidal activity and cytotoxicity effects of solvent extracts from three aromatic plants-Curcuma longa (turmeric), Ocimum americanum (hoary basil), and Petroselinum crispum (parsley)-against Aedes albopictus. Subsequently, we examined the phytochemical composition of the extracts through gas chromatography-mass spectrometry (GC-MS) analysis. Results revealed that the hexane extracts of O. americanum and P. crispum exhibited the greatest larvicidal activity with the lowest median lethal concentration (LC50) values (<30 µg/mL) at 24 h post-treatment, with the former found to be significantly less toxic towards African monkey kidney (Vero) cells. The GC-MS analysis of the said extract indicated the presence of different classes of metabolites, including phenylpropanoids, very long-chain alkanes, fatty acids and their derivatives, and terpenes, with the most abundant component being methyl eugenol (55.28%), most of which, have been documented for their larvicidal activities. These findings provide valuable insights into the potential use and development of bioinsecticides, particularly from O. americanum.
Collapse
Affiliation(s)
- Huimei Lim
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Sook Yee Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Lai Yee Ho
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Nam Weng Sit
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
5
|
Adeoti JO, Ogungbite OC, Salami OS, Odeyemi OO. Susceptibility of processed and stored cassava, plantain, yam, and cocoyam to coffee bean weevil ( Araecerus fasciculatus De Geer). JOURNAL OF BASIC & APPLIED ZOOLOGY 2023; 84:20. [PMID: 37274431 PMCID: PMC10233170 DOI: 10.1186/s41936-023-00341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
Background Coffee bean weevil (Araecerus fasciculatus DeGeer) (Coleoptera: Anthribidae) infestation is a major challenge affecting processed, dried, and stored foods globally. However, the growth performance of this insect pest in processed and stored cassava, plantain, yam, and cocoyam is poorly understood. Resolving this will guide future biotechnological efforts on these food products. In the study, the susceptibility rate of the processed and stored product of cassava, yam, cocoyam, and plantain to the growth performance of the coffee bean weevil at laboratory conditions (20 ± 5 °C and 70 ± 5% R.H.) was investigated. The anti-nutritional (phytate, alkaloids, saponin, tannin, and oxalate) contents of this stored food were used to characterize the survival rate of A. fasciculatus. The study was carried out for 6 months between December 2012 and May 2013. Results Results show that the adult longevity, growth, and feeding of the adult A. fasciculatus decrease in order from Cassava, Plantain, Yam to Cocoyam. Cocoyam has the highest tannin, alkaloid, and phytate values, which are possible factors that inhibited the growth of the larvae, pupae, and adults' A. fasciculatus. The highest weight loss occurred in cassava followed by plantain. The anti-nutritional factors determine the hatchability of the A. fasciculatus eggs and throughout its development stages. This study revealed that processed and stored products (e.g., cocoyam) with high anti-nutritional factors can survive A. fasciculatus under prolonged storage. Conclusions From this study, it is observed that high anti-nutritional compounds in the stored food products inhibit the growth of Araecerus fasciculatus, especially in cocoyam. The result is important in food security and management in developing countries where food insecurity has become a major challenge.
Collapse
|
6
|
In vitro and in silico analysis of the Anopheles anticholinesterase activity of terpenoids. Parasitol Int 2023; 93:102713. [PMID: 36455706 DOI: 10.1016/j.parint.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Anopheles gambiae, An. coluzzii, An. arabiensis, and An. funestus are major vectors in high malaria endemic African regions. Various terpenoid classes form the main chemical constituent repository of essential oils, many of which have been shown to possess insecticidal effects against Anopheles species. The current study aimed to assess the bioactivity of terpenoids including four sesquiterpene alcohols, farnesol, (-)-α-bisabolol, cis-nerolidol, and trans-nerolidol; a phenylpropanoid, methyleugenol, and a monoterpene, (R)-(+)-limonene, using the larvicidal screening assay against the four Anopheles species. The mechanism of action was investigated through in vitro acetylcholinesterase inhibition assay and in silico molecular modelling. All six terpenoids showed potent larvicidal activity against the four Anopheles species. Insights into the mechanism of action revealed that the six terpenoids are strong AChE inhibitors against An. funestus and An. arabiensis, while there was a moderate inhibitory activity against An. gambiae AChE, but very weak activity against An. coluzzii. Interestingly, in the in silico study, farnesol established a favourable hydrogen bonding interaction with a conserved amino acid residue, Cys447, at the entrance to the active site gorge. While (-)-α-bisabolol and methyleugenol displayed a strong interaction with the catalytic Ser360 and adjacent amino acid residues; but sparing the mutable Gly280 residue that confers resistance to the current anticholinesterase insecticides. As a result, this study identified farnesol, (-)-α-bisabolol, and methyleugenol as selective bioinsecticidal agents with potent Anopheles AChE inhibition. These terpenoids present as natural compounds for further development as anticholinesterase bioinsecticides.
Collapse
|
7
|
Alonso-Hernández N, Granados-Echegoyen C, Vera-Reyes I, Pérez-Pacheco R, Arroyo-Balán F, Valdez-Calderón A, Espinosa-Roa A, Loeza-Concha HJ, Villanueva-Sánchez E, García-Pérez F, Diego-Nava F. Assessing the Larvicidal Properties of Endemic Campeche, Mexico Plant Piper cordoncillo var. apazoteanum (Piperaceae) against Aedes aegypti (Diptera: Culicidae) Mosquitoes. INSECTS 2023; 14:312. [PMID: 37103127 PMCID: PMC10144729 DOI: 10.3390/insects14040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The research aims to investigate the mortality effect of essential oil from Piper cordoncillo var. apazoteanum, an endemic plant from Campeche, Mexico, on early second-instar Aedes aegypti larvae; it also aims to identify the volatile compounds present in the fresh leaves of the plant. To test the effectiveness of the essential oil, we followed World Health Organization Standard Procedures. Larvae were observed for 17 consecutive days after treatment to determine the mortality and growth-inhibitory effect exerted by the essential oil. The results showed that the essential oil was effective in controlling mosquito populations. At a concentration of 800 ppm, the oil achieved an effectiveness rate of 70.00 ± 8.16% after 24 h, increasing to 100.00 ± 0.01% mortality after 72 h. With a concentration of 400 ppm, the effectiveness was 98.33 ± 0.17% by the end of the experiment. Furthermore, the obtained results demonstrated that the LC50 value was 61.84 ± 6.79 ppm, while the LC90 value was 167.20 ± 11.49 ppm. Essential oil concentrations inhibited the growth of immature insect stages, with concentrations between 800-100 ppm demonstrating very high inhibitory activity, and the lowest concentration of 50 ppm showing high inhibitory activity. The study also identified 24 chemical compounds representing 86.71% of the volatile compound composition of the fresh leaves of P. cordoncillo; the most abundant compounds were Safrole, Caryophyllene oxide, E-Nerolidol, and Calarene epoxide. The method used to extract the volatile compounds, solvent-free microwave extraction (SFME), is a promising alternative to traditional methods that avoids the use of potentially harmful solvents, making it more ecologically friendly and potentially safer for professionals handling the extracted compounds. Overall, the study demonstrates the potential of P. cordoncillo essential oil as an effective means of controlling mosquito populations, and provides valuable information on the chemical composition of the plant.Moreover, our study is the first to report on the biological activity and chemical composition of P. cordoncillo worldwide.
Collapse
Affiliation(s)
- Nancy Alonso-Hernández
- Interdisciplinary Research Center for Integral Regional Development (CIIDIR), Oaxaca Campus, National Polytechnic Institute (IPN), Hornos 1003, Oaxaca 71230, Mexico; (N.A.-H.); (F.D.-N.)
| | - Carlos Granados-Echegoyen
- Applied Entomology Laboratory, Center for Studies in Sustainable Development and Wildlife Use (CEDESU), CONACYT-Autonomous University of Campeche, Campeche 24079, Mexico;
| | - Ileana Vera-Reyes
- Biosciences and Agrotechnology Department, CONACYT-Center for Research in Applied Chemistry, Saltillo 25294, Mexico
| | - Rafael Pérez-Pacheco
- Interdisciplinary Research Center for Integral Regional Development (CIIDIR), Oaxaca Campus, National Polytechnic Institute (IPN), Hornos 1003, Oaxaca 71230, Mexico; (N.A.-H.); (F.D.-N.)
| | - Fabián Arroyo-Balán
- Applied Entomology Laboratory, Center for Studies in Sustainable Development and Wildlife Use (CEDESU), CONACYT-Autonomous University of Campeche, Campeche 24079, Mexico;
| | | | - Arián Espinosa-Roa
- Innovation and Technological Research Park (PIIT), CONACYT-Center for Research in Applied Chemistry, Monterrey 66628, Mexico;
| | | | - Evert Villanueva-Sánchez
- National Laboratory for Agrifood and Forestry Research and Service, CONACYT-University of Chapingo, Chapingo 56230, Mexico;
| | | | - Fidel Diego-Nava
- Interdisciplinary Research Center for Integral Regional Development (CIIDIR), Oaxaca Campus, National Polytechnic Institute (IPN), Hornos 1003, Oaxaca 71230, Mexico; (N.A.-H.); (F.D.-N.)
| |
Collapse
|
8
|
Luu-dam NA, Le CVC, Satyal P, Le TMH, Bui VH, Vo VH, Ngo GH, Bui TC, Nguyen HH, Setzer WN. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules 2023; 28:2361. [PMID: 36903605 PMCID: PMC10005233 DOI: 10.3390/molecules28052361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Using essential oils to control vectors, intermediate hosts, and disease-causing microorganisms is a promising approach. The genus Croton in the family Euphorbiaceae is a large genus, with many species containing large amounts of essential oils, however, essential oil studies are limited in terms of the number of Croton species investigated. In this work, the aerial parts of C. hirtus growing wild in Vietnam were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 141 compounds were identified in C. hirtus essential oil, in which sesquiterpenoids dominated, comprising 95.4%, including the main components β-caryophyllene (32.8%), germacrene D (11.6%), β-elemene (9.1%), α-humulene (8.5%), and caryophyllene oxide (5.0%). The essential oil of C. hirtus showed very strong biological activities against the larvae of four mosquito species with 24 h LC50 values in the range of 15.38-78.27 μg/mL, against Physella acuta adults with a 48 h LC50 value of 10.09 μg/mL, and against ATCC microorganisms with MIC values in the range of 8-16 μg/mL. In order to provide a comparison with previous works, a literature survey on the chemical composition, mosquito larvicidal, molluscicidal, antiparasitic, and antimicrobial activities of essential oils of Croton species was conducted. Seventy-two references (seventy articles and one book) out of a total of two hundred and forty-four references related to the chemical composition and bioactivity of essential oils of Croton species were used for this paper. The essential oils of some Croton species were characterized by their phenylpropanoid compounds. The experimental results of this research and the survey of the literature showed that Croton essential oils have the potential to be used to control mosquito-borne and mollusk-borne diseases, as well as microbial infections. Research on unstudied Croton species is needed to search for species with high essential oil contents and excellent biological activities.
Collapse
Affiliation(s)
- Ngoc Anh Luu-dam
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
| | - Canh Viet Cuong Le
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 321 Huynh Thuc Khang, Hue 530000, Thua Thien Hue, Vietnam
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Thi Mai Hoa Le
- Faculty of Pharmacy, Vinh Medical University, 161 Nguyen Phong Sac, Vinh 461150, Vietnam
| | - Van Huong Bui
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
| | - Van Hoa Vo
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Gia Huy Ngo
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 5000, Vietnam
| | - Thi Chinh Bui
- Faculty of Biology, University of Education, Hue University, 34 Le Loi St., Hue 530000, Vietnam
| | - Huy Hung Nguyen
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 5000, Vietnam
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
9
|
Larvicidal Activity and Phytochemical Profiling of Sweet Basil (Ocimum basilicum L.) Leaf Extract against Asian Tiger Mosquito (Aedes albopictus). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Applying larvicides to interrupt a mosquito’s life cycle is an important strategy for vector control. This study was conducted to evaluate the larvicidal properties of the hexane extract of sweet basil (Ocimum basilicum L.; family Lamiaceae) leaves against the wild strain of Asian tiger mosquito, Aedes albopictus (Skuse). Third instar larvae (20 larvae/replicate, n = 3) were exposed to different concentrations of the extract (6.25–200 µg/mL), and the mortality rate was recorded. Probit analysis showed that the median lethal concentration and 95% lethal concentration of the extract were 16.0 (10.9–22.1) and 53.0 (34.6–136.8) µg/mL, respectively, after 24 h exposure. Only the fractions F3, F4, and F5 from the column chromatography displayed high mortality rates of 91.7–100% at 25.0 µg/mL after 24 h exposure. Subsequent column chromatography from the pooled fraction yielded two active subfractions, H-F345-S2 and H-F345-S3, with mortality rates of 100% and 98.3 ± 2.9%, respectively, at 12.5 µg/mL. Gas chromatography–mass spectrometry analysis unveiled that methyl chavicol, 2-(2-butoxyethoxy)ethanol, cedrelanol, methyl eugenol, 2,4,di-tert-butylphenol, and phytol were the major components in both subfractions with some of them being reported as larvicidal compounds. The results suggest that sweet basil has substantial larvicidal activity against Ae. albopictus mosquito and is a potential source of naturally derived larvicide.
Collapse
|
10
|
Comprehensive Utilization of Immature Honey Pomelo Fruit for the Production of Value-Added Compounds Using Novel Continuous Phase Transition Extraction Technology. BIOLOGY 2021; 10:biology10080815. [PMID: 34440047 PMCID: PMC8389540 DOI: 10.3390/biology10080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary For the first time, this study investigated the extraction of bioactive substances with different polarities from immature honey pomelo fruit (IPF), a by-product of pomelo planting processing that causes resource waste and environmental pollution, using novel continuous phase transition extraction technology (CPTE). The results showed that CPTE was suitable for extracting essential oil, naringin, and pectin in sequence according to their polarities. The naringin extraction process was optimized by the response surface methodology, resulting in an extract ratio up to 99.47%. Moreover, the pectin extracted from IPF by CPTE showed better quality compared to commercial counterparts, as evidenced by lower protein and ash contents and higher white value. Together, these results suggested that CPTE could be a promising technology to improve the application value of IPF. For instance, the extracted bioactive components can be utilized as nutraceutical food ingredients. The scientific insights from this study will contribute to the development of functional food ingredients and comprehensive utilization of farming by-products. Abstract The immature honey pomelo fruit (IPF) is a huge agro-industrial by-product generated during pomelo planting. Although IPF is rich in nutrients, more than 95% of IPF is discarded annually, which causes resource waste and a serious environmental problem. Here, we report a novel continuous phase transition extraction technology (CPTE) to improve the comprehensive utilization of IPF by sequentially generating high value products and solve pollution problems related to their disposal. First, essential oil was successively extracted by CPTE at a yield of 1.12 ± 0.36%, in which 43 species were identified. Second, naringin extraction parameters were optimized using the response surface methodology (RSM), resulting in a maximum extraction rate of 99.47 ± 0.15%. Finally, pectin was extracted at a yield of 20.23 ± 0.66%, which is similar to the contents of commercial pectin. In conclusion, this study suggested that IPF was an excellent potential substrate for the production of value-added components by CPTE.
Collapse
|
11
|
Milugo TK, Tchouassi DP, Kavishe RA, Dinglasan RR, Torto B. Naturally Occurring Compounds With Larvicidal Activity Against Malaria Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.718804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Female Anopheles mosquitoes transmit Plasmodium parasites that cause human malaria. Currently, vector control is the most widely deployed approach to reduce mosquito population and hence disease transmission. This relies on use of insecticide-based interventions including Long-lasting Insecticide-treated Nets (LLINs) and Indoor Residual Spraying (IRS) where scale-up has contributed to a dramatic decline in malaria deaths and morbidity over the past decade. Challenges to their effective use include the emergence and spread of insecticide resistance by malaria vector populations coupled with the inability to curb outdoor transmission. Under these situations, use of larvicides through larval source management (LSM) can complement these existing measures. The need to minimize environmental impact and effect on non-target organisms has spurred interest in the development of eco-friendly larvicides of natural origin. Here, we review literature published in the last five years to highlight compounds of natural origin found to exhibit larvicidal activity against malaria mosquitoes. Specifically, the larvicidal activity of different classes of compounds is discussed including their effect on non-target organisms. Additionally, we provide suggestions for future research into mosquito larvicides including the use of chemical synthesis to improve the bioactivity of known natural compounds.
Collapse
|
12
|
Oladipupo SO, Hu XP, Appel AG. Topical Toxicity Profiles of Some Aliphatic and Aromatic Essential Oil Components Against Insecticide-Susceptible and Resistant Strains of German Cockroach (Blattodea: Ectobiidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:896-904. [PMID: 31820778 DOI: 10.1093/jee/toz323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Toxicity profiles of four aliphatic (α-pinene, cyclononanone, limonene, nerolidol), four aromatic (β-thujaplicin, carvacrol, eugenol, tropolone) essential oil components (EOCs), and permethrin were investigated against three strains of German cockroach, Blattella germanica (L.). The strains include a susceptible strain (S), and two multi-resistant strains - strains D and E. Also, a synergism bioassay, using piperonyl butoxide (PBO) was conducted. The most toxic EOCs were aromatic EOCs carvacrol, eugenol, and tropolone, followed by aliphatic EOC limonene; all had LD50 values of <0.7 mg/µl. Four of the EOCs were equally toxic against all the strains, with carvacrol being the most toxic, followed by eugenol, tropolone, and α-pinene. The other four EOCs were more toxic against strain S than against the two resistant strains. Permethrin was significantly more toxic to strain S (LD50 = 0.056 µg/µl) compared with the resistant strains (D = 2.138 µg/µl, E = 1.730 µg/µl). Toxicity of aliphatic EOCs correlated positively with their molecular weight against strain E only, whereas both molecular weight and vapor pressure of aromatic EOCs correlated significantly with toxicity in all strains. Strain D exhibited the greatest resistance (RR of 6.7) to EOCs, and synergism to the aliphatic EOC cyclononanone. Clear synergism with PBO was observed in permethrin against resistant strains, but not in all of the EOCs, suggesting multiple resistance mechanisms in the resistant cockroaches. These findings give insight on the potential of EOCs to be incorporated as parts of an IPM approach to managing insecticide resistant German cockroaches.
Collapse
Affiliation(s)
- S O Oladipupo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - X P Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - A G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| |
Collapse
|
13
|
Dhinakaran SR, Mathew N, Munusamy S. Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug Dev Res 2019; 80:791-799. [PMID: 31241777 DOI: 10.1002/ddr.21560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Most of the essential oils (EO) known for mosquitocidal activity contain terpenes as part of their chemical constituents. In this study, four monoterpenes namely γ-terpinene (T), R-(+)-limonene (L), carvacrol (C), and trans-anethole (A) were screened against late third instar Aedes aegypti Linn. larvae singly and in combination to find out the synergistic interaction. The monoterpenes γ-terpinene, R-(+)-limonene, trans-anethole, and carvacrol showed larvicidal activity with LC50 values of 9.76, 11.88, 50.19, 48.57 ppm and LC90 values of 16.99, 17.78, 65.21, 75.02 ppm, respectively for Ae. aegypti when tested individually. Prepared binary combinations at LC20 values and studied the synergistic interactions based on cotoxicity factor (CTF) and found that all the binary combinations showed synergistic interactions (CTF > 20). Further, the binary (1:1), ternary (1:1:1), and quaternary (1:1:1:1) terpene combinations on equal weight basis were prepared, evaluated against Ae. aegypti larvae and synergistic interactions were studied by Wadley's method. Among the eight combinations two combinations viz. LC (LC50 10.42 ppm) and LA (LC50 11.86 ppm) were showing synergistic interactions (R > 1.5) and others were exhibiting additive effect (1.5 ≥ R > 0.5) and none of the combinations showed antagonism (R < 0.5). Among the two methods used the Wadley's method found suitable when combinations were made on an equal weight basis. The two binary combinations found in this study are promising synergistic mixtures which has scope in designing mosquito larvicidal EOs by enriching the EOs with terpenes or by producing EO combinations with these terpenes as chemical constituents in the correct proportions.
Collapse
Affiliation(s)
| | - Nisha Mathew
- ICMR-Vector Control Research Centre, Puducherry, India
| | | |
Collapse
|
14
|
Wang Z, Perumalsamy H, Wang X, Ahn YJ. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci Rep 2019; 9:411. [PMID: 30674912 PMCID: PMC6344527 DOI: 10.1038/s41598-018-36558-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
This study was performed to determine the toxicity and possible mechanism of the larvicidal action of honokiol, extracted from Magnolia denudata seeds, and its 10 related compounds against third-instar larvae of insecticide-susceptible Culex pipiens pallens, Aedes aegypti, and Aedes albopictus and Anopheles sinensis resistant to deltamethrin and temephos. Honokiol (LC50, 6.13–7.37 mg/L) was highly effective against larvae of all of the four mosquito species, although the toxicity of the compound was lower than that of the synthetic larvicide temephos. Structure–activity relationship analyses indicated that electron donor and/or bulky groups at the ortho or para positions of the phenol were required for toxicity. Honokiol moderately inhibited acetylcholinesterase and caused a considerable increase in cyclic AMP levels, indicating that it might act on both acetylcholinesterase and octopaminergic receptors. Microscopy analysis clearly indicated that honokiol was mainly targeted to the midgut epithelium and anal gills, resulting in variably dramatic degenerative responses of the midgut through sequential epithelial disorganization. Honokiol did not affect the AeCS1 mRNA expression level in Ae. aegypti larvae, but did enhance expression of the genes encoding vacuolar-type H+-ATPase and aquaporin 4, indicating that it may disturb the Na+, Cl− and K+ co-transport systems. These results demonstrate that honokiol merits further study as a potential larvicide, with a specific target site, and as a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Zhangqian Wang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Haribalan Perumalsamy
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xue Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Qian S, Ji H, Wu X, Li N, Yang Y, Bu J, Zhang X, Qiao L, Yu H, Xu N, Zhang C. Detection and quantification analysis of chemical migrants in plastic food contact products. PLoS One 2018; 13:e0208467. [PMID: 30517180 PMCID: PMC6281260 DOI: 10.1371/journal.pone.0208467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Plastic food contact materials (FCM)-based products were widely used in everyday life. These products were normally imposed to strict regulations in order to pass the enforcement tests of compliance as a prefix condition. However, even in these “qualified” materials, unknown chemical substances, not involving in legislation lists, could migrate from FCM. In this perspective, the present work aims to thoroughly analyze by means of Gas Chromatography-Mass Spectrometry (GC-MS) the different substances/migrants in 120 qualified FCM plastic products. Unexpectedly, among the identified compounds (nearly 100), only 13% was included in the permitted list of Commission Regulation EU No 10/2011. All the identified compounds were classified into 11 categories according to their chemical structure and the FCM type, whereas toxicology data were in addition analyzed. Each plastic type exhibited different preferences of chemical migrants. Fortunately, most of the compounds identified were of low toxicity, and only 4 chemicals were included in priority lists and previous literature reports as potential risk factors. Subsequently, the accurate amount of these 4 chemicals was determined. The amount of Bis(2-ethylhexyl) adipate (DEHA) and Bis(2-ethylhexyl) phthalate (DEHP) were lower than the SML in Commission Regulation EU No 10/2011, and that of stearamide was under the recommended use quantity. The 2,4-di-tert-butylphenol (2,4-DTBP) was widely exist in the investigated FCM products. Among them, the highest level is obtained in polypropylene/low density polyethylene (BOPP/LDPE) materials, up to 45.568±31.513 mg/kg. In summary, a panel of unlisted chemical migrants were discovered and identified by GS-MS screening. The results implied that plastic FCMs were not so “inert” as they usually considered, and further safety evaluation should be performed toward the complete identification of new substances in FCM products.
Collapse
Affiliation(s)
- Shasha Qian
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Hanxu Ji
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - XiaoXiao Wu
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
- Southeast University, State Key Laboratory of Bioelectronics, Nanjing, PR China
| | - Ning Li
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Yang Yang
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Jiangtao Bu
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Xiaoming Zhang
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Ling Qiao
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Henglin Yu
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Ning Xu
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
| | - Chi Zhang
- Nanjing Institute of Supervision & Testing on Product Quality, National Supervision & Testing Centre for Food & Food Addictives, Jiangsu Center of Supervision & Testing on Green Degradable Material Quality, Nanjing, PR China
- * E-mail:
| |
Collapse
|
16
|
Hari I, Mathew N. Larvicidal activity of selected plant extracts and their combination against the mosquito vectors Culex quinquefasciatus and Aedes aegypti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9176-9185. [PMID: 29460245 DOI: 10.1007/s11356-018-1515-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/08/2018] [Indexed: 05/27/2023]
Abstract
In order to develop an environment-friendly botanical mosquito larvicide alternative to the chemical larvicides, extracts were made from the leaves of Hyptis suaveolens, Lantana camara, Nerium oleander, and Tecoma stans with three organic solvents such as methanol (ME), chloroform (CH), and petroleum ether (PE) using a Soxhlet extractor. The plant extracts were screened for larvicidal activity individually and in combination against the larvae of Aedes aegypti and Culex quinquefasciatus as per WHO protocol. Among the extracts, the maximum larvicidal activity was shown by the PE extract of L. camara (LC50 10.63 mg/L) followed by the PE extract of T. stans (LC50 19.26 mg/L), ME extract of N. oleander (LC50 35.82 mg/L), and PE extract of H. suaveolens (LC50 38.39 mg/L) against Cx. quinquefasciatus. In the case of Ae. aegypti, the PE extract of T. stans showed maximum activity with LC50 value of 55.41 mg/L followed by H. suaveolens (LC50 64.49 mg/L), PE extract of L. camara (LC50 74.93 mg/L), and ME extract of N. oleander (LC50 84.09). A blend of these four extracts resulted in a combination with corresponding LC50 values of 4.32 and 7.19 mg/L against Cx. quinquefasciatus and Ae. aegypti. The predator safety factors were 12.55 and 20.88 for Gambusia affinis with respect to Aedes and Culex larvae for the extract combination. Chemical constituents in extracts were also identified by FT-IR and GC-MS data. The present investigations suggest the possible use of this blend of botanical extracts as an ideal ecofriendly, larvicide against Ae. aegypti and Cx. quinquefasciatus larvae.
Collapse
Affiliation(s)
- Irrusappan Hari
- ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Nisha Mathew
- ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
| |
Collapse
|
17
|
Essential oils and their components as an alternative in the control of mosquito vectors of disease. BIOMEDICA 2017; 37:224-243. [PMID: 29161495 DOI: 10.7705/biomedica.v37i0.3475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/27/2017] [Indexed: 11/21/2022]
Abstract
More than half of the human population is exposed to mosquito-borne infections. Climate change and the emergence of strains resistant to traditionally used insecticides have motivated the search of new agents for mosquito population control. Essential oils have been effective repellents and larvicidal agents.The aim of this work was to review research studies conducted in recent years on the larvicidal activity of essential oils and their components against Aedes, Anopheles and Culex mosquitoes, as well as the latest reports about their possible mechanism of action.
Collapse
|
18
|
Zhao MP, Liu QZ, Liu Q, Liu ZL. Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsii Roots against the Three Species of Mosquitoes. Molecules 2017; 22:molecules22020205. [PMID: 28134799 PMCID: PMC6155871 DOI: 10.3390/molecules22020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022] Open
Abstract
The screening of Chinese medicinal herbs for insecticidal principles showed that the essential oil of Echinops grijsii Hance roots possessed significant larvicidal activity against mosquitoes. The essential oil was extracted via hydrodistillation and its constituents were determined by gas chromatography-mass spectrometry (GC-MS) analysis. GC-MS analyses revealed the presence of 31 components, with 5-(3-buten-1-yn-1-yl)-2,2'-bithiophene (5-BBT, 27.63%), αterthienyl (α-T, 14.95%),1,8-cineole (5.56%) and cis-β-ocimene (5.01%) being the four major constituents. Based bioactivity-directed chromatographic separation of the essential oil led to the isolation of 5-BBT, 5-(4-isovaleroyloxybut-1-ynyl)-2,2'-bithiophene (5-IBT) and αT as active compounds. The essential oil of E. grijsii exhibited larvicidal activity against the fourth instar larvae of Aedes albopictus, Anopheles sinensis and Culex pipiens pallens with LC50 values of 2.65 μg/mL, 3.43 μg/mL and 1.47 μg/mL, respectively. The isolated thiophenes, 5-BBT and 5-IBT, possessed strong larvicidal activity against the fourth instar larvae of Ae. albopictus(LC50 = 0.34 μg/mL and 0.45 μg/mL, respectively) and An. sinensis(LC50 = 1.36 μg/mL and 5.36 μg/mL, respectively). The two isolated thiophenes also had LC50 values against the fourth instar larvae of C. pipiens pallens of 0.12 μg/mL and 0.33 μg/mL, respectively. The findings indicated that the essential oil of E. grijsii roots and the isolated thiophenes have an excellent potential for use in the control of Ae.albopictus, An. sinensis and C. pipiens pallens larvae and could be used in the search for new, safer and more effective natural compounds as larvicides.
Collapse
Affiliation(s)
- Mei Ping Zhao
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Qi Zhi Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhi Long Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
19
|
Chan WK, Tan LTH, Chan KG, Lee LH, Goh BH. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016; 21:molecules21050529. [PMID: 27136520 PMCID: PMC6272852 DOI: 10.3390/molecules21050529] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 11/16/2022] Open
Abstract
Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is a naturally occurring sesquiterpene alcohol that is present in various plants with a floral odor. It is synthesized as an intermediate in the production of (3E)-4,8-dimethy-1,3,7-nonatriene (DMNT), a herbivore-induced volatile that protects plants from herbivore damage. Chemically, nerolidol exists in two geometric isomers, a trans and a cis form. The usage of nerolidol is widespread across different industries. It has been widely used in cosmetics (e.g., shampoos and perfumes) and in non-cosmetic products (e.g., detergents and cleansers). In fact, U.S. Food and Drug Administration (FDA) has also permitted the use of nerolidol as a food flavoring agent. The fact that nerolidol is a common ingredient in many products has attracted researchers to explore more medicinal properties of nerolidol that may exert beneficial effect on human health. Therefore, the aim of this review is to compile and consolidate the data on the various pharmacological and biological activities displayed by nerolidol. Furthermore, this review also includes pharmacokinetic and toxicological studies of nerolidol. In summary, the various pharmacological and biological activities demonstrated in this review highlight the prospects of nerolidol as a promising chemical or drug candidate in the field of agriculture and medicine.
Collapse
Affiliation(s)
- Weng-Keong Chan
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Loh Teng-Hern Tan
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Learn-Han Lee
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand.
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand.
| |
Collapse
|
20
|
Contact and Repellent Activities of the Essential Oil from Juniperus formosana against Two Stored Product Insects. Molecules 2016; 21:504. [PMID: 27092485 PMCID: PMC6273697 DOI: 10.3390/molecules21040504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of the essential oil from Juniperus formosana leaves and its contact and repellent activities against Tribolium castaneum and Liposcelis bostrychophila adults were investigated. The essential oil of J. formosana leaves was obtained by hydrodistillation and analyzed by GC-MS. A total of 28 components were identified and the main compounds in the essential oil were α-pinene (21.66%), 4-terpineol (11.25%), limonene (11.00%) and β-phellandrene (6.63%). The constituents α-pinene, 4-terpineol and d-limonene were isolated from the essential oil. It was found that the essential oil exhibited contact activity against T. castaneum and L. bostrychophila adults (LD50 = 29.14 μg/adult and 81.50 µg/cm², respectively). The compound 4-terpineol exhibited the strongest contact activity (LD50 = 7.65 μg/adult). In addition, data showed that at 78.63 nL/cm², the essential oil and the three isolated compounds strongly repelled T. castaneum adults. The compounds α-pinene and d-limonene reached the same level (Class V) of repellency as DEET (p = 0.396 and 0.664) against L. bostrychophila at 63.17 nL/cm² after 2 h treatment. The results indicate that the essential oil and the isolated compounds have potential to be developed into natural insecticides and repellents to control insects in stored products.
Collapse
|