1
|
Cui K, Jiang C, Sun L, Wang M, He L, Zhou L. Resistance risk assessment for benzovindiflupyr in Sclerotium rolfsii and transmission of resistance genes among population. PEST MANAGEMENT SCIENCE 2024; 80:3979-3987. [PMID: 38520375 DOI: 10.1002/ps.8101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Sclerotium rolfsii is a destructive soil-borne fungal pathogen which is distributed worldwide. In previous study, the succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr has been identified for its great antifungal activity against Sclerotium rolfsii. This study is aimed to investigate the resistance risk and mechanism of benzovindiflupyr in Sclerotium rolfsii. RESULTS Eight stable benzovindiflupyr-resistant isolates were generated by fungicide adaptation. Although the obtained eight resistant isolates have a stronger pathogenicity than the parental sensitive isolate, they have a fitness penalty in the mycelial growth and sclerotia formation compared to the parental isolate. A positive cross-resistance existed in the resistant isolates between benzovindiflupyr and thifluzamide, carboxin, boscalid and isopyrazam. Three-point mutations, including SdhBN180D, SdhCQ68E and SdhDH103Y, were identified in the benzovindiflupyr-resistant isolates. However, molecular docking analysis indicated that only SdhDH103Y could influence the sensitivity of Sclerotium rolfsii to benzovindiflupyr. After mycelial co-incubation of resistant isolates and the sensitive isolate, resistance genes may be transmitted to the sensitive isolate. The in vivo efficacy of benzovindiflupyr and thifluzamide against benzovindiflupyr-resistant isolates was a little lower than that against the sensitive isolate but with no significant difference. CONCLUSION The results suggested a low to medium resistance risk of Sclerotium rolfsii to benzovindiflupyr. However, once resistance occurs, it is possible to spread in the population of Sclerotium rolfsii. This study is helpful to understanding the risk and mechanism of resistance to benzovindiflupyr in multinucleate pathogens such as Sclerotium rolfsii. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Longjiang Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Liu X, Sun Y, Liu C, Liu B, Li T, Chen X, Chen Y. Various amino acid substitutions in succinate dehydrogenase complex regulating differential resistance to pydiflumetofen in Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105990. [PMID: 39084767 DOI: 10.1016/j.pestbp.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 μg/mL, and an average EC50 value of 1.1005 ± 0.3727 μg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.
Collapse
Affiliation(s)
- Xinyan Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Chuchu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Bing Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Tiantian Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Li K, Hong S, Yu Z, Hong Z, Sun Y, Cheng J, Tang L, Wang Y, Qi X, Fan Z. Computation-Directed Molecular Design, Synthesis, and Fungicidal Activity of Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19372-19384. [PMID: 38049388 DOI: 10.1021/acs.jafc.3c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are a class of fungicides targeting the pathogenic fungi mitochondrial SDH. Here, molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations were used to guide SDHI innovation. Molecular docking was performed to explore the binding modes of SDH and its inhibitors. 3D-QSAR models were carried out on 33 compounds with activity against Rhizoctonia cerealis (R. cerealis); their structure-activity relationships were analyzed using comparative molecular field analysis and comparative molecular similarity indices analysis. MD simulations were used to assess the stability of the complexes under physiological conditions, and the results were consistent with molecular docking. Binding free energy was calculated through the molecular mechanics generalized born surface area method, and the binding free energy was decomposed. The results are consistent with the activity of bioassay and indicate that van der Waals and lipophilic interactions contribute the most in the molecular binding process. Afterward, we designed and synthesized 12 compounds under the guidance of the above-mentioned analyses, bioassay found that F9 was active against R. cerealis with the EC50 value of 9.43 μg/mL, and F4, F5, and F9 were active against Botrytis cinerea with an EC50 values of 5.80, 3.17, and 1.63 μg/mL, respectively. They all showed good activity between positive controls of pydiflumetofen and thifluzamide. Our study provides new considerations for effective SDHIs discovery.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuang Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yaru Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300112, P. R. China
| | - Xin Qi
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300112, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Dorigan AF, Moreira SI, da Silva Costa Guimarães S, Cruz-Magalhães V, Alves E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. PEST MANAGEMENT SCIENCE 2023; 79:4731-4753. [PMID: 37592727 DOI: 10.1002/ps.7726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
5
|
Yin YM, Sun ZY, Wang DW, Xi Z. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14471-14482. [PMID: 37775473 DOI: 10.1021/acs.jafc.3c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Succinate dehydrogenase (SDH) is an attractive target for developing green fungicides to manage agricultural pathogens in modern agriculture research. Herein, in this work, we report the discovery of benzothiazolylpyrazole-4-carboxamides I-III as potent SDH inhibitors using active fragment exchange and link approach. The results of the fungicidal activity assays showed that some of the synthesized compounds exhibited excellent inhibition against the tested fungi. Systematic structure-activity relationship studies led to the discovery of compound Ip, N-(1-((4,6-difluorobenzo[d]thiazol-2-yl)thio)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide, which showed higher fungicidal activity against Fusarium graminearum Schw (EC50 = 0.93 μg/mL) than the commercial fungicides thifluzamide (EC50 > 50 μg/mL) and boscalid (EC50 > 50 μg/mL). The molecular simulation studies suggested that hydrophobic interactions were the primary driving forces between ligands and SDH. Promisingly, we found that Ip could stimulate the growth of wheat seedlings and Arabidopsis thaliana and increase the biomass of the treated plants. Preliminary studies on the plant growth promoter mechanism of Ip indicated that it could increase nitrate reductase activity in planta, that, in turn, stimulates the growth of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zong-Yue Sun
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
6
|
Liu Y, Sun Y, Bai Y, Cheng X, Li H, Chen X, Chen Y. Study on Mechanisms of Resistance to SDHI Fungicide Pydiflumetofen in Fusarium fujikuroi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14330-14341. [PMID: 37729092 DOI: 10.1021/acs.jafc.3c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rice bakaenii disease (RBD) is a widespread and devastating disease mainly caused by Fusarium fujikuroi. Pydiflumetofen (Pyd) is a novel succinate dehydrogenase inhibitor (SDHI) with strong inhibitory activity against F. fujikuroi, but the mechanism of resistance to Pyd has not been well studied for this pathogen. Through fungicide adaption, a total of 12 Pyd-resistant mutants were obtained and the resistance level could be divided into three categories of high resistance (HR), moderate resistance (MR), and low resistance (LR) with resistance factors (RF) of 184.04-672.90, 12.63-42.49, and <10, respectively. Seven genotypes of point mutations in FfSdh genes (FfSdhBH248L, FfSdhBH248D, FfSdhBH248Y, FfSdhC2A83V, FfSdhC2H144Y, FfSdhDS106F, and FfSdhDE166K) were found in these mutants, among which genotype FfSdhBH248L and FfSdhC2A83V mutants showed HR, genotype FfSdhBH248D, FfSdhBH248Y, FfSdhC2H144Y, and FfSdhDE166K mutants showed MR, and genotype FfSdhDS106F mutants showed LR. Moreover, all the substitutions of amino acid point mutations including FfSdhBH248L/D/Y, FfSdhC2A83V,H144Y, and FfSdhDS106F,E166K conferring resistance to Pyd in F. fujikuroi were verified by protoplast transformation. Additionally, a positive cross-resistance was detected between Pyd and another SDHI fungicide penflufen, while no cross-resistance was detected between Pyd and phenamacril, prochloraz, azoxystrobin, carbendazim, or fludioxonil. Although pathogenicity of the mutants was increased compared with that of the wild-type parental strains, the mycelial growth rate and spore production levels of the resistant mutants were significantly decreased (P < 0.05), indicating significant fitness cost of resistance to Pyd in F. fujikuroi. Taken together, the risk of resistance to Pyd in F. fujikuroi might be moderate, and appropriate precautions against resistance development in natural populations should be taken into account when Pyd is used for the control of RBD.
Collapse
Affiliation(s)
- Yu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Bai
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin Cheng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hui Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Yang X, Shu Y, Cao S, Sun H, Zhang X, Zhang A, Li Y, Ma D, Chen H, Li W. Trehalase Inhibitor Validamycin May Have Additional Mechanisms of Toxicology against Rhizoctonia cerealis. J Fungi (Basel) 2023; 9:846. [PMID: 37623617 PMCID: PMC10455246 DOI: 10.3390/jof9080846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Sharp eyespot is a crucial disease affecting cereal plants, such as bread wheat (Triticum aestivum) and barley (Hordeum vulgare), and is primarily caused by the pathogenic fungus Rhizoctonia cerealis. As disease severity has increased, it has become imperative to find an effective and reasonable control strategy. One such strategy is the use of the trehalose analog, validamycin, which has been shown to have a potent inhibitory effect on several trehalases found in both insects and fungi, and is widely used as a fungicide in agriculture. In this study, we demonstrated that 0.5 μg/mL validamycin on PDA plates had an inhibitory effect on R. cerealis strain R0301, but had no significant impact on Fusarium graminearum strain PH-1. Except for its inhibiting the trehalase activity of pathogenic fungi, little is known about its mechanism of action. Six trehalase genes were identified in the genome of R. cerealis, including one neutral trehalase and five acidic trehalase genes. Enzyme activity assays indicated that treatment with 5 μg/mL validamycin significantly reduces trehalase activity, providing evidence that validamycin treatment does indeed affect trehalase, even though the expression levels of most trehalase genes, except Rc17406, were not obviously affected. Transcriptome analysis revealed that treatment with validamycin downregulated genes involved in metabolic processes, ribosome biogenesis, and pathogenicity in the R. cerealis. KEGG pathway analysis further showed that validamycin affected genes related to the MAPK signaling pathway, with a significant decrease in ribosome synthesis and assembly. In conclusion, our results indicated that validamycin not only inhibits trehalose activity, but also affects the ribosome synthesis and MAPK pathways of R. cerealis, leading to the suppression of fungal growth and pesticidal effects. This study provides novel insights into the mechanism of action of validamycin.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Yi K, Yan W, Li X, Yang S, Li J, Yin Y, Yuan F, Wang H, Kang Z, Han D, Zeng Q. Identification of Long Intergenic Noncoding RNAs in Rhizoctonia cerealis following Inoculation of Wheat. Microbiol Spectr 2023; 11:e0344922. [PMID: 37036374 PMCID: PMC10269763 DOI: 10.1128/spectrum.03449-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023] Open
Abstract
Wheat sharp eyespot caused by Rhizoctonia cerealis is primarily a severe threat to worldwide wheat production. Currently, there are no resistant wheat cultivars, and the use of fungicides is the primary method for controlling this disease. Elucidating the mechanisms of R. cerealis pathogenicity can accelerate the pace of the control of this disease. Long intergenic noncoding RNAs (lincRNAs) that function in plant-pathogen interactions might provide a new perspective. We systematically analyzed lincRNAs and identified a total of 1,319 lincRNAs in R. cerealis. We found that lincRNAs are involved in various biological processes, as shown by differential expression analysis and weighted correlation network analysis (WGCNA). Next, one of nine hub lincRNAs in the blue module that was related to infection and growth processes, MSTRG.4380.1, was verified to reduce R. cerealis virulence on wheat by a host-induced gene silencing (HIGS) assay. Following that, RNA sequencing (RNA-Seq) analysis revealed that the significantly downregulated genes in the MSTRG.4380.1 knockdown lines were associated mainly with infection-related processes, including hydrolase, transmembrane transporter, and energy metabolism activities. Additionally, 23 novel microRNAs (miRNAs) were discovered during small RNA (sRNA) sequencing (sRNA-Seq) analysis of MSTRG.4380.1 knockdown, and target prediction of miRNAs suggested that MSTRG.4380.1 does not act as a competitive endogenous RNA (ceRNA). This study performed the first genome-wide identification of R. cerealis lincRNAs and miRNAs. It confirmed the involvement of a lincRNA in the infection process, providing new insights into the mechanism of R. cerealis infection and offering a new approach for protecting wheat from R. cerealis. IMPORTANCE Rhizoctonia cerealis, the primary causal agent of wheat sharp eyespot, has caused significant losses in worldwide wheat production. Since no resistant wheat cultivars exist, chemical control is the primary method. However, this approach is environmentally unfriendly and costly. RNA interference (RNAi)-mediated pathogenicity gene silencing has been proven to reduce the growth of Rhizoctonia and provides a new perspective for disease control. Recent studies have shown that lincRNAs are involved in various biological processes across species, such as biotic and abiotic stresses. Therefore, verifying the function of lincRNAs in R. cerealis is beneficial for understanding the infection mechanism. In this study, we reveal that lincRNAs could contribute to the virulence of R. cerealis, which provides new insights into controlling this pathogen.
Collapse
Affiliation(s)
- Ke Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhao C, Li S, Ma Z, Wang W, Gao L, Han C, Yang A, Wu X. Anastomosis Groups and Mycovirome of Rhizoctonia Isolates Causing Sugar Beet Root and Crown Rot and Their Sensitivity to Flutolanil, Thifluzamide, and Pencycuron. J Fungi (Basel) 2023; 9:jof9050545. [PMID: 37233256 DOI: 10.3390/jof9050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Anastomosis groups (AGs) or subgroups of 244 Rhizoctonia isolates recovered from sugar beet roots with symptoms of root and crown rot were characterized to be AG-A, AG-K, AG-2-2IIIB, AG-2-2IV, AG-3 PT, AG-4HGI, AG-4HGII, and AG-4HGIII, with AG-4HGI (108 isolates, 44.26%) and AG-2-2IIIB (107 isolates, 43.85%) being predominate. Four unclassified mycoviruses and one hundred and one putative mycoviruses belonging to six families, namely Mitoviridae (60.00%), Narnaviridae (18.10%), Partitiviridae (7.62%), Benyviridae (4.76%), Hypoviridae (3.81%), and Botourmiaviridae (1.90%), were found to be present in these 244 Rhizoctonia isolates, most of which (88.57%) contained positive single-stranded RNA genome. The 244 Rhizoctonia isolates were all sensitive to flutolanil and thifluzamide, with average median effective concentration (EC50) value of 0.3199 ± 0.0149 μg·mL-1 and 0.1081 ± 0.0044 μg·mL-1, respectively. Among the 244 isolates, except for 20 Rhizoctonia isolates (seven isolates of AG-A and AG-K, one isolate of AG-4HGI, and 12 isolates of AG-4HGII), 117 isolates of AG-2-2IIIB, AG-2-2IV, AG-3 PT, and AG-4HGIII, 107 isolates of AG-4HGI, and six isolates of AG-4HGII were sensitive to pencycuron, with average EC50 value of 0.0339 ± 0.0012 μg·mL-1. Correlation index (ρ) of cross-resistance level between flutolanil and thifluzamide, flutolanil and pencycuron, and thifluzamide and pencycuron was 0.398, 0.315, and 0.125, respectively. This is the first detailed study on AG identification, mycovirome analysis, and sensitivity to flutolanil, thifluzamide, and pencycuron of Rhizoctonia isolates associated with sugar beet root and crown rot.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenjun Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Anpei Yang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Liu S, Ma J, Jiang B, Yang G, Guo M. Functional characterization of MoSdhB in conferring resistance to pydiflumetofen in blast fungus Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2022; 78:4018-4027. [PMID: 35645253 DOI: 10.1002/ps.7020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is an important cereal crop around the world, and has constantly been threaten by the most destructive fungus Magnaporthe oryzae. Pydiflumetofen, a novel succinate dehydrogenase inhibitor (SDHI), is currently being used for controlling various fungal diseases. However, the potential resistance risk of M. oryzae to pydiflumetofen has remained unclear to date, and finding the resistance mechanism is critical for the usage of this fungicide. RESULTS The M. oryzae strain Guy11 is sensitive to pydiflumetofen, with EC50 value of 1.24 μg mL-1 . 58 pydiflumetofen-resistant (PR) mutants were obtained through pydiflumetofen-induced spontaneous mutation, with a mean EC50 value >500 μg mL -1 , and the resistance factor (RF) >400. The PR mutants displayed positive cross-resistance to carboxin, but were more sensitive to fluopyram. Sequencing analysis showed that all PR mutants presented a cytosine-to-thymine transition at nucleotide position +1218, resulting in a replacement of histidine 245 by tyrosine (H245Y) on MoSdhB. The mutation of MoSdhB exhibited strong resistant phenotype, but no detectable growth deficits in fungal development, including vegetative growth and pathogenicity of M. oryzae. An allele-specific PCR for rapid detection of the H245Y mutants was established in M. oryzae. CONCLUSION The M. oryzae is sensitive to pydiflumetofen, and shows a medium to high resistance risk to pydiflumetofen. A point mutation of MoSdhB (H245Y) is responsible for the fungal resistance to pydiflumetofen in M. oryzae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyi Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ji Ma
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bingxin Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Chen C, Zhang Y, Li L, Chen Y, Zuo S, Chen X. Correlations among population genetic structure, geographic origin, growth rate, and fungicide resistance of Rhizoctonia solani AG 1-IA, the pathogen of rice sheath blight. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:821-834. [PMID: 36127826 DOI: 10.1080/03601234.2022.2124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhizoctonia solani AG1-IA is a necrotrophic fungus that causes rice sheath blight and results in severe yield and quality reductions in rice worldwide. Differences of genetic structure and fungicide sensitivity of the pathogen have significant effects on the severity and control effect of this disease in the field. To determine correlations among population genetic structure, geographic origin, growth rate, and fungicide resistance of the pathogen, 293 strains of R. solani were isolated from diseased rice collected from 13 cities of Jiangsu Province and five regions of China. Simple sequence repeat (SSR) molecular marker technology was used to analyze the genetic diversity of these strains, and a total of 74 bands were amplified by nine pairs of primers. Population genetic structure analysis showed that strains from Central China and northern Jiangsu had the highest Nei's gene diversity index and Shannon diversity index. The vast majority of strains grew fast with colony diameters of more than 60.0 mm cultured at 28 °C for 36 h. The half-maximal effective concentration (EC50) of them to tebuconazole, thifluzamide, and propiconazole varied ∼16.2-, 3.8-, and 7.5-fold. However, the genetic diversity of R. solani had no significant correlation with their geographic origin, growth rate or fungicide sensitivity.
Collapse
Affiliation(s)
- Chen Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yun Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Lili Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuwen Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xijun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Li X, Mu K, Yang S, Wei J, Wang C, Yan W, Yuan F, Wang H, Han D, Kang Z, Zeng Q. Reduction of Rhizoctonia cerealis Infection on Wheat Through Host- and Spray-Induced Gene Silencing of an Orphan Secreted Gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:803-813. [PMID: 36102883 DOI: 10.1094/mpmi-04-22-0075-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhizoctonia cerealis is a soilborne fungus that can cause sharp eyespot in wheat, resulting in massive yield losses found in many countries. Due to the lack of resistant cultivars, fungicides have been widely used to control this pathogen. However, chemical control is not environmentally friendly and is costly. Meanwhile, the lack of genetic transformation tools has hindered the functional characterization of virulence genes. In this study, we attempted to characterize the function of virulence genes by two transient methods, host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), which use RNA interference to suppress the pathogenic development. We identified ten secretory orphan genes from the genome. After silencing these ten genes, only the RcOSP1 knocked-down plant significantly inhibited the growth of R. cerealis. We then described RcOSP1 as an effector that could impair wheat biological processes and suppress pathogen-associated molecular pattern-triggered immunity in the infection process. These findings confirm that HIGS and SIGS can be practical tools for researching R. cerealis virulence genes. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Keqing Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Jiajing Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Congnawei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Zhao C, Li Y, Liang Z, Gao L, Han C, Wu X. Molecular Mechanisms Associated with the Resistance of Rhizoctonia solani AG-4 Isolates to the Succinate Dehydrogenase Inhibitor Thifluzamide. PHYTOPATHOLOGY 2022; 112:567-578. [PMID: 34615378 DOI: 10.1094/phyto-06-21-0266-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thifluzamide, a succinate dehydrogenase (SDH) inhibitor, possesses high activity against Rhizoctonia. In this study, 144 Rhizoctonia solani AG-4 (4HGI, 4HGII, and 4HGIII) isolates, the predominate pathogen associated with sugar beet seedling damping-off, were demonstrated to be sensitive to thifluzamide with a calculated mean median effective concentration of 0.0682 ± 0.0025 μg/ml. Thifluzamide-resistant isolates were generated using fungicide-amended media, resulting in four AG-4HGI isolates and eight AG-4HGII isolates with stable resistance and almost no loss in fitness. Evaluation of cross-resistance of the 12 thifluzamide-resistant isolates and their corresponding parental-sensitive isolates revealed a moderately positive correlation between thifluzamide resistance and the level of resistance to eight other fungicides from three groups, the exception being fludioxonil. An active efflux of fungicide through ATP-binding cassette and major facilitator superfamily transporters was found to be correlated to the resistance of R. solani AG-4HGII isolates to thifluzamide based on RNA-sequencing and quantitative reverse transcription-PCR analyses. Sequence analysis of sdhA, sdhB, sdhC, and sdhD revealed replacement of isoleucine by phenylalanine at position 61 in SDHC in 9 of the 12 generated thifluzamide-resistant isolates. No other mutations were found in any of the other genes. Collectively, the data indicate that the active efflux of fungicide and a point mutation in sdhC may contribute to the resistance of R. solani AG-4HGI and AG-4HGII isolates to thifluzamide in vitro. This is the first characterization of the potential molecular mechanism associated with the resistance of R. solani AG-4 isolates to thifluzamide and provides practical guidance for the use of this fungicide.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
14
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
15
|
Miao J, Mu W, Bi Y, Zhang Y, Zhang S, Song J, Liu X. Heterokaryotic state of a point mutation (H249Y) in SDHB protein drives the evolution of thifluzamide resistance in Rhizoctonia solani. PEST MANAGEMENT SCIENCE 2021; 77:1392-1400. [PMID: 33098218 DOI: 10.1002/ps.6155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sheath blight, caused by Rhizoctonia solani, can be effectively controlled by application of the succinate dehydrogenase inhibitor thifluzamide. Although the risk of resistance to thifluzamide in R. solani had been reported, the thifluzamide-resistance mechanism and the evolution of thifluzamide-resistance in R. solani have not been investigated in detail. RESULTS No differences were found between the sequences of proteins SDHA, SDHC, and SDHD in thifluzamide-sensitive isolates and thifluzamide-resistant mutants, but a single point mutation H249Y was found in SDHB. Two different types of thifluzamide-resistant R. solani mutants were characterized: homokaryotic, carrying only the resistance allele; and heterokaryotic, retaining the wild-type allele in addition to the resistance allele. The resistance level differed according to the nuclear composition at codon 249 in the sdhB gene. Molecular docking results suggested that the point mutation (H249Y) might significantly alter the affinity of thifluzamide and SDHB protein. Heterokaryotic mutants were able to evolve into a homokaryon when repeatedly cultured on agar media or rice plants in the presence of thifluzamide, but thifluzamide treatment had no effect on the genotypes of homokaryotic mutants or sensitive isolates. CONCLUSION This study showed that H249Y in SDHB protein could cause thifluzamide resistance in R. solani. Fungicide application could promote heterokaryotic mutants to evolve into a homokaryon. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wenjun Mu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Key Laboratory of Eco-Environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yang Bi
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Beijing Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing, China
| | - Yanling Zhang
- Key Laboratory of Eco-Environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Shaoliang Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jizhen Song
- Key Laboratory of Eco-Environment and Leaf Tobacco Quality, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Yu B, Zhao B, Hao Z, Chen L, Cao L, Guo X, Zhang N, Yang D, Tang L, Fan Z. Design, synthesis and biological evaluation of pyrazole-aromatic containing carboxamides as potent SDH inhibitors. Eur J Med Chem 2021; 214:113230. [PMID: 33581553 DOI: 10.1016/j.ejmech.2021.113230] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 01/04/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022]
Abstract
To continue our ongoing studies on discovery of new potent antifungal leads, 43 novel pyrazole-aromatic containing carboxamides were rationally designed and synthesized. Bioassays indicated that most target compounds displayed good in vitro antifungal activities against Botrytis cinerea, Rhizoctonia cerealis and Sclerotinia sclerotiorum and in vivo antifungal activity against R. solani. Compound 11ea exhibited the most significant in vitro activity against R. cerealis (EC50 = 0.93 μg/mL) with about 2-fold more potent than a previously reported lead compound A1 (EC50 = 2.01 μg/mL), and about 11-fold more potent than the positive control/commercial succinate dehydrogenase inhibitor thifluzamide (EC50 = 23.09 μg/mL). Structure-activity relationship analysis and molecular docking simulations indicated that the presence of difluoromethyl pyrazole-(m-benzene) carboxamide scaffold obviously increased the antifungal activity. The further enzymatic bioassay showed that both thifluzamide and compound 11ea displayed excellent SDH inhibitory effects, and fluorescence quenching analysis suggested that they may share the same target SDH.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Bin Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, PR China
| | - Zesheng Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Lei Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Lixin Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xiaofeng Guo
- College of Biology, Hunan University, Changsha, 410082, PR China.
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
17
|
Mao X, Wu Z, Bi C, Wang J, Zhao F, Gao J, Hou Y, Zhou M. Molecular and Biochemical Characterization of Pydiflumetofen-Resistant Mutants of Didymella bryoniae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9120-9130. [PMID: 32806116 DOI: 10.1021/acs.jafc.0c03690] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gummy stem blight (GSB), caused by Didymella bryoniae, is a devastating disease on watermelon. Pydiflumetofen belongs to succinate dehydrogenase inhibitor (SDHI) fungicide, which is effective in controlling many plant diseases. The EC50 values of 69 D. bryoniae isolates to pydiflumetofen ranged from 0.0018 to 0.0071 μg/mL, and the minimal inhibitory concentration (MIC) value of all strains to pydiflumetofen was <0.05 μg/mL. Eight pydiflumetofen-resistant mutants were obtained, and the level of resistance was stable. The mycelial growth, dry weight of mycelia, hyphal morphology, and pathogenicity of most resistant mutants did not change significantly compared with their parental strains, which indicated that the resistance risk of D. bryoniae to pydiflumetofen would be medium to high. Sequencing alignment showed that five resistant mutants presented a mutation at codon 277 (H277Y) in the SdhB gene. The point mutants FgSdhBH248Y/R exhibited decreased sensitivity to pydiflumetofen in Fusarium graminearum, which indicated that the point mutants of SdhB could reduce sensitivity to pydiflumetofen. These results further increase our understanding about the mode of action and the resistance mechanism of pydiflumetofen.
Collapse
Affiliation(s)
- Xuewei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zhiwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jing Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
18
|
Yu B, Zhou S, Cao L, Hao Z, Yang D, Guo X, Zhang N, Bakulev VA, Fan Z. Design, Synthesis, and Evaluation of the Antifungal Activity of Novel Pyrazole-Thiazole Carboxamides as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7093-7102. [PMID: 32530619 DOI: 10.1021/acs.jafc.0c00062] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Succinate dehydrogenase (SDH) is regarded as a promising target for fungicide discovery. To continue our ongoing studies on the discovery of novel SDH inhibitors as fungicides, novel pyrazole-thiazole carboxamides were designed, synthesized, and evaluated for their antifungal activity. The results indicated that compounds 9ac, 9bf, and 9cb showed excellent in vitro activities against Rhizoctonia cerealis with EC50 values from 1.1 to 4.9 mg/L, superior to that of the commercial fungicide thifluzamide (EC50 = 23.1 mg/L). Compound 9cd (EC50 = 0.8 mg/L) was far more active than thifluzamide (EC50 = 4.9 mg/L) against Sclerotinia sclerotiorum. Compound 9ac exhibited promising in vivo activity against Rhizoctonia solani (90% at 10 mg/L), which was better than that of thifluzamide (80% at 10 mg/L). The field experiment showed that compound 9ac had 74.4% efficacy against Rhizoctonia solani on the 15th day after two consecutive sprayings at an application rate of 4.80 g a.i./667 m2, which was close to that of thifluzamide (83.3%). Furthermore, molecular docking explained the possible binding mode of compound 9ac in the RcSDH active site. Our studies indicated that the pyrazole-thiazole carboxamide hybrid is a new scaffold of SDH inhibitors.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lixin Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zesheng Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaofeng Guo
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Vasiliy A Bakulev
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
Sun HY, Cui JH, Tian BH, Cao SL, Zhang XX, Chen HG. Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor. PEST MANAGEMENT SCIENCE 2020; 76:1549-1559. [PMID: 31696614 DOI: 10.1002/ps.5675] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pydiflumetofen is a new generation succinate dehydrogenase inhibitor currently undergoing the process of registration in China for the control of Fusarium head blight in wheat. A resistance risk assessment of Fusarium graminearum to pydiflumetofen was undertaken in this study. RESULTS A total of 75 pydiflumetofen-resistant mutants were generated through spontaneous selection and displayed high resistance with an average resistance factor (RF) value of 78. Four mutants were generated through UV mutagenesis and displayed very high resistance with an RF value >1000. The sequence analysis results for Sdh genes and fitness studies revealed the existence of four types of mutations. In particular, 32 spontaneous selection mutants (SP mutants) had an arginine (R) to histidine (H) transition at position 86 in FGSdhC, resulting in seriously reduced fitness. Seven SP mutants had an R to cysteine (C) transition at position 86 in FGSdhC, resulting in reduced fitness. Thirty-six SP mutants had an alanine (A) to valine (V) transition at position 83 in FGSdhC and had no fitness penalties. The efficacy of pydiflumetofen towards a mutant carrying A83V in FGSdhC in vivo was significantly decreased at 42.7%. Four UV mutants had no mutations on all Sdh genes and no fitness penalties. Cross-resistance among boscalid, fluopyram and pydiflumetofen was observed. CONCLUSION Sdhc mutations were found and other target site resistance may be present in laboratory PR mutants of F. graminearum. An overall moderate risk of resistance development in F. graminearum was recommended for pydiflumetofen. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai-Yan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jia-He Cui
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bao-Hua Tian
- Crop protection development, Syngenta (China) Investment Co., Ltd, Shanghai, China
| | - Shu-Lin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiang-Xiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huai-Gu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Hawkins NJ, Fraaije BA. Fitness Penalties in the Evolution of Fungicide Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:339-360. [PMID: 29958074 DOI: 10.1146/annurev-phyto-080417-050012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The evolution of resistance poses an ongoing threat to crop protection. Fungicide resistance provides a selective advantage under fungicide selection, but resistance-conferring mutations may also result in fitness penalties, resulting in an evolutionary trade-off. These penalties may result from the functional constraints of an evolving target site or from the resource allocation costs of overexpression or active transport. The extent to which such fitness penalties are present has important implications for resistance management strategies, determining whether resistance persists or declines between treatments, and for resistance risk assessments for new modes of action. Experimental results have proven variable, depending on factors such as temperature, nutrient status, osmotic or oxidative stress, and pathogen life-cycle stage. Functional genetics tools allow pathogen genetic background to be controlled, but this in turn raises the question of epistatic interactions. Combining fitness penalties under various conditions into a field-realistic scenario poses an important future challenge.
Collapse
Affiliation(s)
- N J Hawkins
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| | - B A Fraaije
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| |
Collapse
|