1
|
Ren Y, Dong W, Chen J, Xue H, Bu W. Identification and function of microRNAs in hemipteran pests: A review. INSECT SCIENCE 2024. [PMID: 39292965 DOI: 10.1111/1744-7917.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Hemiptera is one of the most significant orders of insect pests, including whiteflies, true bugs, aphids, planthoppers, psyllids, and so forth, which have led to substantial economic losses in agricultural industries and have significantly affected food yields through their ability to suck the phloem sap of crops and transmit numerous bacterial and viral pathogens. Therefore, explorations of pest-specific, eco-friendly and easy-to-adopt technologies for hemipteran pest control are urgently needed. To the best of our knowledge, microRNAs (miRNAs), which are endogenous non-coding small RNAs approximately 22 nucleotides in length, are involved in regulating gene expression via the direct recognition and binding of the 3'-untranslated region (3'-UTR) of target messenger RNAs (mRNAs) or by acting as a center of a competitive endogenous RNA (ceRNA) network at the post-transcriptional level. This review systematically outlines the characterization and functional investigation of the miRNA biogenesis pathway in hemipteran pests, such as whiteflies, true bugs, aphids and planthoppers. In addition, we explored the results of small RNA sequencing and functional observations of miRNAs in these pests, and the results suggest that the numerous miRNAs obtained and annotated via high-throughput sequencing technology and bioinformatic analyses contribute to molting development, fitness, wing polyphenism, symbiont interactions and insecticide resistance in hemipteran pests. Finally, we summarize current advances and propose a framework for future research to extend the current data and address potential limitations in the investigation and application of hemipteran miRNAs.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Dong
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Cheng X, Zhou Q, Xiao J, Qin X, Zhang Y, Li X, Zheng W, Zhang H. Nanoparticle LDH enhances RNAi efficiency of dsRNA in piercing-sucking pests by promoting dsRNA stability and transport in plants. J Nanobiotechnology 2024; 22:544. [PMID: 39237945 PMCID: PMC11378424 DOI: 10.1186/s12951-024-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.
Collapse
Affiliation(s)
- Xiaoqin Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiedan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueying Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Yan Y, Liu DQ, Li C, Yang WJ, Xu KK. Disruption of microRNA pathway core genes inhibits molting and reproduction of the cigarette beetle, Lasioderma serricorne. PEST MANAGEMENT SCIENCE 2024; 80:4543-4552. [PMID: 38738474 DOI: 10.1002/ps.8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND MicroRNA (miRNA) pathway genes have been widely reported to participate in several physiological events in insect lifecycles. The cigarette beetle Lasioderma serricorne is an economically important storage pest worldwide. However, the functions of miRNA pathway genes in L. serricorne remain to be clarified. Herein, we investigated the function of molting and reproduction of the miRNA pathway in L. serricorne. RESULTS LsDicer-1, LsArgonaute-1, LsLoquacious and LsExportin-5 were universally expressed in adults, whereas LsPasha and LsDrosha were mainly expressed in the pupae. The genes presented different patterns in various tissues. Silencing of LsDicer-1, LsArgonaute-1, LsDrosha and LsExportin-5 resulted in a high proportion of wing deformities and molting defects. Silencing of LsDicer-1, LsArgonaute-1, LsPasha and LsLoquacious affected the development of the ovary and the maturation of oocytes, resulting in a significant decrease in fecundity. Further investigation revealed that the decreases in LsDicer-1 and LsArgonaute-1 expression destroyed follicular epithelia and delayed vitellogenesis and oocyte development. In addition, the expression levels of several miRNAs (let-7, let-7-5p, miR-8-3p, miR-8-5p, miR-9c-5p, miR-71, miR-252-5p, miR-277-3p, miR-263b and Novel-miR-50) were decreased significantly after knockdown of these miRNA pathway core genes, indicating that they played important roles in regulating miRNA-mediated gene expression. CONCLUSION The results indicate that miRNA pathway genes play important roles in the molting, ovarian development and female fecundity of L. serricorne, and thus are potentially suitable target genes for developing an RNAi strategy against a major pest of stored products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Yan
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - De-Qian Liu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Wen-Jia Yang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kang-Kang Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
4
|
Ren QQ, Long GY, Yang H, Zhou C, Yang XB, Yan Y, Yan X. Conserved microRNAs miR-8-3p and miR-2a-3 targeting chitin biosynthesis to regulate the molting process of Sogatella furcifera (Horváth)(Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae123. [PMID: 38894631 DOI: 10.1093/jee/toae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Molting is a key solution to growth restriction in insects. The periodic synthesis and degradation of chitin, one of the major components of the insect epidermis, is necessary for insect growth. MicroRNA (miRNA) have been implicated in molting regulation, yet their involvement in the interplay interaction between the chitin synthesis pathway and 20-hydroxyecdysone signaling remains poorly understood. In this study, soluble trehalase (Tre1) and phosphoacetylglucosamine mutase (PAGM) were identified as targets of conserved miR-8-3p and miR-2a-3, respectively. The expression profiles of miR-8-3p-SfTre1 and miR-2a-3-SfPAGM exhibited an opposite pattern during the different developmental stages, indicating a negative regulatory relationship between them. This relationship was confirmed by an in vitro dual-luciferase reporter system. Overexpression of miR-8-3p and miR-2a-3 by injection of mimics inhibited the expression of their respective target genes and increased mortality, leading to death in the pre-molting, and molting death phenomena. They also caused a decrease in chitin content and expression levels of key genes in the chitin synthesis pathway (SfTre1, SfTre2, SfHK, SfG6PI, SfGFAT, SfGNA, SfPAGM, SfUAP, SfCHS1, SfCHS1a, and SfCHS1b). Conversely, the injection of miRNA inhibitors resulted in the upregulation of the expression levels of these genes. Following 20E treatment, the expression levels of miR-8-3p and miR-2a-3 decreased significantly, while their corresponding target genes increased significantly. These results indicate that miR-8-3p and miR-2a-3 play a regulatory role in the molting of Sogatella furcifera by targeting SfTre1 and SfPAGM, respectively. These findings provide new potential targets for the development of subsequent new control strategies.
Collapse
Affiliation(s)
- Qian-Qian Ren
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Gui-Yun Long
- School of Chinese Ethnic Medicine, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou, Guiyang, 550001, China
| | - Yi Yan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Xin Yan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Zhang M, Zhang X, Chen T, Liao Y, Yang B, Wang G. RNAi-mediated pest control targeting the Troponin I (wupA) gene in sweet potato weevil, Cylas formicarius. INSECT SCIENCE 2024. [PMID: 38863245 DOI: 10.1111/1744-7917.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Tingting Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonglin Liao
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Zeng QH, Gong MF, Yang H, Chen NN, Lei Q, Jin DC. Effect of four chitinase genes on the female fecundity in Sogatella furcifera (Horváth). PEST MANAGEMENT SCIENCE 2024; 80:1912-1923. [PMID: 38088492 DOI: 10.1002/ps.7933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The white-backed planthopper (WPH), Sogatella furcifera (Horváth), is a destructive rice pest with strong reproductive capacity. To gain insights into the roles of chitinases in the reproductive process of this insect species, this study represents the first-ever endeavor to conduct an in-depth exploration into the reproductive functions of four chitinase genes. RESULTS In this study, it was observed that four chitinase genes were expressed in female adults, with a relatively high expression level in the ovaries. SfCht2 and SfIDGF1 were highly expressed during later ovarian development. while SfENGase increased and then decreased with ovarian development. SfCht2, SfCht6-2 and SfENGase were highly expressed in fat body on the first and second days after eclosion, whereas SfIDGF1 highest on day 7. Compared with control group, Silencing four chitinase genes inhibited ovarian development and significantly shortened the oviposition period of S. furcifera, reducing egg-laying capacity but not affecting egg hatching. The detection demonstrated that the expression levels of SfVg, SfVgR and 70-90% juvenile hormone (JH) signaling pathway-related reproductive genes was significantly down-regulated. Moreover, SfCht6-2 and SfENGase significantly affected the expression levels of Target of Rapamycin (TOR) signaling pathway genes. SfENGase had the ability to impact nutrient signaling pathways and fatty acid metabolism, repressing vitellogenin synthesis and ultimately influencing ovarian development of S. furcifera. CONCLUSIONS Overall, this study provides insight into the function of chitinases in insect fecundity and is of great significance for enriching the cognition of insect chitinase function. They will become the suitable target genes for controlling the most destructive rice planthoppers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing-Hui Zeng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China Guiyang, Guiyang, China
| | - Ming-Fu Gong
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China Guiyang, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China Guiyang, Guiyang, China
| | - Ning-Nan Chen
- Plant Protection 2020, Agricultural College of Guizhou University, Guiyang, China
| | - Qing Lei
- Plant Protection 2020, Agricultural College of Guizhou University, Guiyang, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China Guiyang, Guiyang, China
| |
Collapse
|
7
|
Gong C, Hasnain A, Wang Q, Liu D, Xu Z, Zhan X, Liu X, Pu J, Sun M, Wang X. Eco-friendly deacetylated chitosan base siRNA biological-nanopesticide loading cyromazine for efficiently controlling Spodoptera frugiperda. Int J Biol Macromol 2023; 241:124575. [PMID: 37100329 DOI: 10.1016/j.ijbiomac.2023.124575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Spodoptera frugiperda is a serious threat to various crops, such as corn and rice, and results in severe economic losses. Herein, a chitin synthase sfCHS highly expressed in the epidermis of S. frugiperda was screened, and when interfered by an sfCHS-siRNA nanocomplex, most individuals could not ecdysis (mortality rate 53.3 %) or pupate (abnormal pupation 80.6 %). Based on the results of structure-based virtual screening, cyromazine (CYR, binding free energy -57.285 kcal/mol) could inhibit ecdysis (LC50, 19.599 μg/g). CYR-CS/siRNA nanoparticles encapsulating CYR and SfCHS-siRNA with chitosan (CS) were successfully prepared, as confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and 74.9 mg/g CYR was characterized in the core of CYR-CS/siRNA by high-performance liquid chromatography and Fourier transform infrared spectroscopy. Small amounts of prepared CYR-CS/siRNA containing only 1.5 μg/g CYR could better inhibit chitin synthesis in the cuticle and peritrophic membrane (mortality rate 84.4 %). Therefore, chitosan/siRNA nanoparticle-loaded pesticides were useful for pesticide reduction and comprehensive control of S. frugiperda.
Collapse
Affiliation(s)
- Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ali Hasnain
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiulin Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengze Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxu Zhan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Lyu Z, Xiong M, Mao J, Li W, Jiang G, Zhang W. A dsRNA delivery system based on the rosin-modified polyethylene glycol and chitosan induces gene silencing and mortality in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2023; 79:1518-1527. [PMID: 36519402 DOI: 10.1002/ps.7322] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND RNA interference (RNAi) technology has been considered as a promising pest control strategy due to its species selectivity. One of the popular RNAs is exogenous double strand RNA (dsRNA). However, dsRNA is easily degraded by nucleases and is difficult to pass through the insect body walls, and these factors restrict the application of RNAi technology in pest management. Here, the brown planthopper (BPH, Nilaparvata lugens), a major hemipteran pest of rice in Asia countries was used as a model insect, and a dsRNA topical delivery system was constructed. RESULTS The carrier part of the delivery system was composed of rosin-modified polyethylene glycol and chitosan, termed ROPE@C. When the N/P ratio was greater than 1:1.25, the dsRNA/ROPE@C complex encouraged full binding of the dsRNA. The gel electrophoresis results showed that ROPE@C improved the stability of dsRNA in the presence of nucleases in gut and lumen contents for at least 6 h and in the temperature range from 4 °C to 37 °C. The dsNlCHSA/ROPE@C/alkyl polyglycoside (APG) nano-formulation directly penetrated the body walls reaching hemocoel within 6 h, and consequently, the relative expression of chitin synthetase A (CHSA) in BPH was reduced by 54.3% and the mortality rate was 65.8%. CONCLUSION We developed an appropriate delivery method for dsRNA application in BPH, which is helpful for a large-scale application of RNAi pesticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihao Lyu
- School of Agriculture, State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Mingxin Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Jie Mao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gangbiao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wenqing Zhang
- School of Agriculture, State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Fan X, Zhang W. Genome-wide identification of FAR gene family and functional analysis of NlFAR10 during embryogenesis in the brown planthopper Nilaparvata lugens. Int J Biol Macromol 2022; 223:798-811. [PMID: 36375673 DOI: 10.1016/j.ijbiomac.2022.11.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Fatty acyl-CoA reductases (FARs) catalyze the synthesis of fatty alcohols from corresponding fatty acid precursors in organisms. However, the function of FARs in insect fecundity and embryogenesis remains largely unclear. Here, a total of 22 putative FAR proteins were identified in the brown planthopper Nilaparvata lugens, a hemipteran insect pest of rice, and most of them were highly expressed in embryonic stages. Among them, NlFAR10 was specifically and highly expressed in the later embryogenesis, but was promiscuously expressed in tissues of adults. The heterologously expressed NlFAR10 was able to produce the intermediate fatty acid alcohols from the corresponding acyl-CoA precursors. When NlFAR10 was silenced through RNAi in vivo, the embryogenesis was obviously inhibited, resulting in low hatching rates. Moreover, the metabolome analyses indicated that loss of NlFAR10 affected lipid metabolism and purine metabolism during embryogenesis. To the best of our knowledge, this is the first report of a FAR member affecting insect embryogenesis, thus providing a new target for future pest management.
Collapse
Affiliation(s)
- Xiaobin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Institute of Zoology, Chinese Academy of Science, No. 1 Beichen WestRoad, Chaoyang District, Beijing, 100101, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Mansour A, Mannaa M, Hewedy O, Ali MG, Jung H, Seo YS. Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions. THE PLANT PATHOLOGY JOURNAL 2022; 38:432-448. [PMID: 36221916 PMCID: PMC9561162 DOI: 10.5423/ppj.rw.07.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.
Collapse
Affiliation(s)
- Abdelaziz Mansour
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613,
Egypt
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Plant Pathology, Cairo University, Giza 12613,
Egypt
| | - Omar Hewedy
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1,
Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514,
Egypt
| | - Mostafa G. Ali
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha 13518,
Egypt
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
11
|
Zhang C, Hu W, Yu Z, Liu X, Wang J, Xin T, Zou Z, Xia B. Characterization of Chitin Synthase A cDNA from Diaphorina citri (Hemiptera: Liviidae) and Its Response to Diflubenzuron. INSECTS 2022; 13:728. [PMID: 36005353 PMCID: PMC9409846 DOI: 10.3390/insects13080728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Diaphorina citri Kuwayama is the vector of HLB and one of the most common pests in citrus orchards in southern China. One of the most significant genes in D. citri's growth and development is the chitin synthase gene. In this study, the CHS gene (DcCHSA) of D. citri was cloned and analyzed by bioinformatics. According to RT-qPCR findings, DcCHSA was expressed at many growth processes of D. citri, with the greatest influence in the fifth-instar nymph. The molting failure rate and mortality of D. citri rose as DFB concentration increased in this research, as did the expression level of DcCHSA. Feeding on DcCHSA caused a large drop in target gene expression, affected nymph molting, caused failure or even death in freshly eclosion adults, increased mortality, and reduced the molting success rate over time. These findings showed that DcCHSA was involved in nymph to adult development and may aid in the identification of molecular targets for D. citri regulation. It provided new ideas for further control of D. citri.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Deng Z, Zhang Y, Li L, Xie X, Huang J, Zhang M, Ni X, Li X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. INSECT SCIENCE 2022; 29:631-644. [PMID: 34232550 DOI: 10.1111/1744-7917.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNA molecules that bind to target messenger RNAs (mRNAs) and affect the stability or translational efficiency of the bound mRNAs. Single or dual-luciferase reporter systems have been successfully used to identify miRNA target genes in mammalian cells. These reporter systems, however, are not sensitive enough to verify miRNA-target gene relationships in insect cell lines because the promoters of the target luciferase (usually Renilla) used in these reporter systems are too weak to drive sufficient expression of the target luciferase in insect cells. In this study, we replaced the SV40 promoter in the psiCHECK-2 reporter vector, which is widely used with mammalian cell lines, with the HSV-TK or AC5.1 promoter to yield two new dual-luciferase reporter vectors, designated psiCHECK-2-TK and psiCHECK-2-AC5.1, respectively. Only psiCHECK-2 and psiCHECK-2-AC5.1 had suitable target (Renilla)/reference (firefly) luciferase activity ratios in mammalian (HeLa and HEK293) and insect (Sf9, S2, Helicoverpa zea fat body and ovary) cell lines, while psiCHECK-2-TK had suitable Renilla/firefly luciferase activity ratios regardless of the cell line. Moreover, psiCHECK-2-TK successfully detected the interaction between Helicoverpa armigera miRNA9a and its target, the 3'-untranslated region of heat shock protein 90, in both mammalian and H. zea cell lines, but psiCHECK-2 failed to do so in H. zea cell lines. Furthermore, psiCHECK-2-TK with the target sequence, HzMasc (H. zea Masculinizer), accurately differentiated between H. zea cell lines with or without the negative regulation factor (miRNA or piRNA) of HzMasc. These data demonstrate that psiCHECK-2-TK can be used to functionally characterize small RNA target genes in both mammalian and insect cells.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Glucosamine-6-phosphate N-acetyltransferase gene silencing by parental RNA interference in rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Sci Rep 2022; 12:2141. [PMID: 35136178 PMCID: PMC8825807 DOI: 10.1038/s41598-022-06193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Parental RNAi (pRNAi) is a response of RNA interference in which treated insect pests progenies showed a gene silencing phenotypes. pRNAi of CmGNA gene has been studied in Cnaphalocrocis medinalis via injection. Our results showed significant reduction in ovulation per female that was 26% and 35.26% in G1 and G2 generations, respectively. Significant reduction of hatched eggs per female were observed 23.53% and 45.26% as compared to control in G1–G2 generations, respectively. We also observed the significant variation in the sex ratio between female (40% and 53%) in G1–G2 generations, and in male (65%) in G1 generation as compared to control. Our results also demonstrated the significant larval mortality (63% and 55%) and pupal mortality (55% and 41%), and significant reduction of mRNA expression level in G1 and G2 generations. Our findings have confirmed that effectiveness of pRNAi induced silencing on the CmGNA target gene in G1–G2 generations of C. medinalis. These results suggested the potential role of pRNAi in insect pest resistance management strategies.
Collapse
|
14
|
Mao K, Jin R, Ren Z, Zhang J, Li Z, He S, Ma K, Wan H, Li J. miRNAs targeting CYP6ER1 and CarE1 are involved in nitenpyram resistance in Nilaparvata lugens. INSECT SCIENCE 2022; 29:177-187. [PMID: 33783101 DOI: 10.1111/1744-7917.12910] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The evolution of nitenpyram resistance has been confirmed to be related to overexpression of two key metabolic enzyme genes, CYP6ER1 and CarE1, in Nilaparvata lugens, a highly destructive rice pest that causes substantial economic losses and has developed insecticide resistance. As microRNAs (miRNAs) are important post-transcriptional regulators of gene expression, whether they are involved in nitenpyram resistance is poorly understood in N. lugens. In this study, knockdown of key genes in the miRNA biogenesis pathway (Dicer1, Drosha, and Argonaute1) changed CYP6ER1 and CarE1 abundance, which confirmed the importance of miRNAs in nitenpyram resistance. Furthermore, global screening of miRNAs associated with nitenpyram resistance in N. lugens was performed, and a total of 42 known and 178 novel miRNAs were identified; of these, 57 were differentially expressed between the susceptible and resistant strains, and two (novel_85 and novel_191) were predicted to target CYP6ER1 and CarE1, respectively. Luciferase reporter assays demonstrated that novel_85 and novel_191 bind to the CYP6ER1 and CarE1 coding regions, respectively, and downregulate their expression. Moreover, modulating novel_85 and novel_191 expression by injection of miRNA inhibitors and mimics significantly altered N. lugens nitenpyram susceptibility. This is the first study to systematically screen and identify miRNAs associated with N. lugens nitenpyram resistance, and provides important information that can be used to develop new miRNA-based targets in insecticide resistance management.
Collapse
Affiliation(s)
- Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhao Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Shen W, Cao S, Liu J, Zhang W, Chen J, Li JF. Overexpression of an Osa-miR162a Derivative in Rice Confers Cross-Kingdom RNA Interference-Mediated Brown Planthopper Resistance without Perturbing Host Development. Int J Mol Sci 2021; 22:ijms222312652. [PMID: 34884461 PMCID: PMC8657652 DOI: 10.3390/ijms222312652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rice is a main food crop for more than half of the global population. The brown planthopper (BPH, Nilaparvata lugens) is one of the most destructive insect pests of rice. Currently, repeated overuse of chemical insecticides represents a common practice in agriculture for BPH control, which can induce insect tolerance and provoke environmental concerns. This situation calls for innovative and widely applicable strategies for rice protection against BPH. Here we report that the rice osa-miR162a can mediate cross-kingdom RNA interference (RNAi) by targeting the NlTOR (Target of rapamycin) gene of BPH that regulates the reproduction process. Through artificial diet or injection, osa-miR162a mimics repressed the NlTOR expression and impaired the oviposition of BPH adults. Consistently, overproduced osa-miR162a in transgenic rice plants compromised the fecundity of BPH adults fed with these plants, but meanwhile perturbed root and grain development. To circumvent this issue, we generated osa-miR162a-m1, a sequence-optimized osa-miR162a, by decreasing base complementarity to rice endogenous target genes while increasing base complementarity to NlTOR. Transgenic overexpression of osa-miR162a-m1 conferred rice resistance to BPH without detectable developmental penalty. This work reveals the first cross-kingdom RNAi mechanism in rice-BPH interactions and inspires a potentially useful approach for improving rice resistance to BPH. We also introduce an effective strategy to uncouple unwanted host developmental perturbation from desirable cross-kingdom RNAi benefits for overexpressed plant miRNAs.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Shanni Cao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Jinhui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (J.C.); (J.-F.L.); Tel./Fax: +86-20-39943513 (J.-F.L.)
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
- Correspondence: (J.C.); (J.-F.L.); Tel./Fax: +86-20-39943513 (J.-F.L.)
| |
Collapse
|
16
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
17
|
Schmid S, Song Y, Tollefsen KE. AOP Report: Inhibition of Chitin Synthase 1 Leading to Increased Mortality in Arthropods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2112-2120. [PMID: 33818824 DOI: 10.1002/etc.5058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 05/22/2023]
Abstract
Arthropods (including insects, crustaceans, and arachnids) rely on the synthesis of chitin to complete their life cycles (Merzendorfer 2011). The highly conserved chitin synthetic process and the absence of this process in vertebrates make it an exploitable target for pest management and veterinary medicines (Merzendorfer 2013; Junquera et al. 2019). Susceptible, nontarget organisms, such as insects and aquatic invertebrates, exposed to chitin synthesis inhibitors may suffer population declines, which may have a negative impact on ecosystems and associated services. Hence, it is important to properly identify, prioritize, and regulate relevant chemicals posing potential hazards to nontarget arthropods. The need for a more cost-efficient and mechanistic approach in risk assessment has been clearly evident and triggered the development of the adverse outcome pathway (AOP) framework (Ankley et al. 2010). An AOP links a molecular initiating event (MIE) through key events (KEs) to an adverse outcome. The mechanistic understanding of the underlying toxicological processes leading to a regulation-relevant adverse outcome is necessary for the utilization of new approach methodologies (NAMs) and efficient coverage of wider chemical and taxonomic domains. In the last decade, the AOP framework has gained traction and expanded within the (eco)toxicological research community. However, there exists a lack of mature invertebrate AOPs describing molting defect-associated mortality triggered by direct inhibition of relevant enzymes in the chitin biosynthetic pathway (chitin synthesis inhibitors) or interference with associated endocrine systems by environmental chemicals (endocrine disruptors). Arthropods undergo molting to grow and reproduce (Heming 2018). This process is comprised of the synthesis of a new exoskeleton, followed by the exuviation of the old exoskeleton (Reynolds 1987). The arthropod exoskeleton (cuticle) can be divided into 2 layers, the thin and nonchitinous epicuticle, which is the outermost layer of the cuticle, and the underlying chitinous procuticle. A single layer of epithelial cells is responsible for the synthesis and secretion of both cuticular layers (Neville 1975). The cuticle protects arthropods from predators and desiccation, acts as a physical barrier against pathogens, and allows for locomotion by providing support for muscular function (Vincent and Wegst 2004). Because the procuticle mainly consists of chitin microfibrils embedded in a matrix of cuticular proteins supplemented by lipids and minerals in insects (Muthukrishnan et al. 2012) and crustaceans (Cribb et al. 2009; Nagasawa 2012), chitin is a determinant factor for the appropriate composition of the cuticle and successful molting (Cohen 2001). A detailed overview of the endocrine mechanisms regulating chitin synthesis is given in Supplemental Data, Figure S1. The shedding of the old exoskeleton in insects is mediated by a sequence of distinct muscular contractions, the ecdysis motor program (EMP; Ayali 2009; Song et al. 2017a). Like the expression of chitin synthase isoform 1 (CHS-1), the expression of peptide hormones regulating the EMP is also controlled by ecdysteroids (Antoniewski et al. 1993; Gagou et al. 2002; Ayali 2009). Cuticular chitin is polymerized from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by the transmembrane enzyme CHS-1, which is localized in the epithelial plasma membrane in insects (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Because crustaceans are also dependent on the synthesis of chitin, the underlying mechanisms are believed to be similar, although less is known about different CHS isoforms and their localization (Rocha et al. 2012; Qian et al. 2014; Uddowla et al. 2014; Harðardóttir et al. 2019). Disruption of either chitin synthesis or the upstream endocrine pathways can lead to lethal molting disruption (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a, 2017b). In the case of chitin synthesis inhibition, molting disruption can be referred to as "premature molting." If ecdysis cannot be completed because of decreased chitin synthesis, the organism may not successfully molt. Even if ecdysis can be completed on inhibition of chitin synthesis, the organism may not survive because of the poor integrity of the new cuticle. These effects are observed in arthropods following molting, which fail to survive subsequent molts (Arakawa et al. 2008; Chen et al. 2008) or animals being stuck in their exuviae (Wang et al. 2019) and ultimately dying as a result of insufficient food or oxygen intake (Camp et al. 2014; Song et al. 2017a). The term "premature molting" is used to differentiate from the term "incomplete ecdysis," which describes inhibition of ecdysis on a behavioral level, namely through reduction of the EMP (Song et al. 2017a). The present AOP describes molting-associated mortality through direct inhibition of the enzyme CHS-1. It expands the small but increasing number of invertebrate AOPs that have relevance to arthropods, the largest phylum within the animal kingdom (Bar-On et al. 2018). The development of this AOP will be useful in further research and regulatory initiatives related to assessment of CHS inhibitors and identification of critical knowledge gaps and may suggest new strategies for ecotoxicity testing efforts. Environ Toxicol Chem 2021;40:2112-2120. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Simon Schmid
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
18
|
Gong C, Wang X, Huang Q, Zhang J, Zhang Y, Zhan X, Zhang S, Hasnain A, Ruan Y, Shen L. The fitness advantages of bistrifluron resistance related to chitin synthase A in Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). PEST MANAGEMENT SCIENCE 2021; 77:3458-3468. [PMID: 33822459 DOI: 10.1002/ps.6399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/20/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Spodoptera litura is one of the major agricultural pests in China, and it has developed serious resistance to many traditional chemical insecticides. In the present study, the bistrifluron-resistant (Bis-SEL) strain accompanied by a higher oviposition, 113.8-fold RR compared to the bistrifluron-susceptible (Bis-UNSEL) strain, was obtained by bidirectional screening. A comparison of their gonad coefficiency and genes related to oviposition or resistance was used to elucidate the resurgence mechanism. RESULTS The ovarian index, oviposition, and potential egg production in the Bis-SEL strain of female adults were significantly higher than those in the Bis-UNSEL strain, and the length of ovariole in the Bis-SEL strain was also significantly elongated. The protein contents of vitellogenin (Vg) and vitellogenin receptor (VgR) in the Bis-UNSEL strain were lower than those in the Bis-SEL strain, consistent with their gene expressions levels, and there was a significantly positive linear correlation between Vg and VgR protein contents, further confirming that resistant strains have high reproductive fitness. Moreover, the chitin synthase A in the Bis-SEL strain was clearly up-regulated, and a mutation (H866Y) near the QRRRW in the catalytic domain caused a rise in the hydrogen bond between UDP-GlcNAc and chitin synthase, and its chitin content was higher than that in the Bis-UNSEL strain. Nevertheless, the sensitivity of the Bis-SEL strain to bistrifluron was significantly recovered when it was knocked down though RNA interference. CONCLUSION The fitness advantages of bistrifluron resistance may be related to the up-regulation and mution of chitin synthase A. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changwei Gong
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xuegui Wang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Qian Huang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jinyue Zhang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yuming Zhang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxu Zhan
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Shuirong Zhang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Ali Hasnain
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yanwei Ruan
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Litao Shen
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Xu CD, Liu YK, Qiu LY, Wang SS, Pan BY, Li Y, Wang SG, Tang B. GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens. Sci Rep 2021; 11:5246. [PMID: 33664411 PMCID: PMC7933274 DOI: 10.1038/s41598-021-84760-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Collapse
Affiliation(s)
- Cai-Di Xu
- College of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yong-Kang Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Sha-Sha Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bi-Ying Pan
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yan Li
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
21
|
Zhao D, Liu ZR, Wu H, Fu CR, Li YZ, Lu XJ, Guo W. RNA interference-mediated functional characterization of Group I chitin deacetylases in Holotrichia parallela Motschulsky. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104770. [PMID: 33771270 DOI: 10.1016/j.pestbp.2021.104770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Chitin deacetylases (CDAs, EC 3.5.1.41) catalyze the N-deacetylation of chitin to produce chitosan, which is essential for insect survival. Hence, CDAs are promising targets for the development of novel insecticidal drugs. In this study, the putative Group I chitin deacetylase genes HpCDA1, HpCDA2-1 and HpCDA2-2 were identified from Holotrichia parallela. Conserved domain database search identified a chitin-binding peritrophin-A domain (ChBD), a low-density lipoprotein receptor class A domain (LDLa), and a putative CDA-like catalytic domain. RT-qPCR analysis showed that the Group I HpCDAs were expressed in various tissues and predominant in the integument. The developmental expression patterns from the first-instar to third-instar larvae showed that HpCDAs were highly expressed on the first day and gradually declined after molting. The functional characteristics of the Group I CDAs in cuticle organization were examined using RNA interference (RNAi) and transmission electron microscopy (TEM) methods. Administration of double-stranded HpCDA (dsHpCDA) through larval injection could suppress the expression levels of HpCDA1 and HpCDA2, thus resulting in abnormal or lethal phenotypes. TEM analysis revealed that RNAi of either HpCDA1 or HpCDA2 remarkably affected the cuticle integrity, as evidenced by cuticle disorganization and chitin laminae disruption, suggesting the crucial role of CDAs in chitin modification. These experimental results demonstrate the important contribution of putative key genes involved in chitin metabolism, and provide a foundation for developing new strategies to control H. parallela.
Collapse
Affiliation(s)
- Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhao-Rui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Chao-Ran Fu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ya-Zi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiu-Jun Lu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
22
|
Ding YJ, Li GY, Xu CD, Wu Y, Zhou ZS, Wang SG, Li C. Regulatory Functions of Nilaparvata lugens GSK-3 in Energy and Chitin Metabolism. Front Physiol 2020; 11:518876. [PMID: 33324230 PMCID: PMC7723894 DOI: 10.3389/fphys.2020.518876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Glucose metabolism is a biologically important metabolic process. Glycogen synthase kinase (GSK-3) is a key enzyme located in the middle of the sugar metabolism pathway that can regulate the energy metabolism process in the body through insulin signaling. This paper mainly explores the regulatory effect of glycogen synthase kinase on the metabolism of glycogen and trehalose in the brown planthopper (Nilaparvata lugens) by RNA interference. In this paper, microinjection of the target double-stranded GSK-3 (dsGSK-3) effectively inhibited the expression of target genes in N. lugens. GSK-3 gene silencing can effectively inhibit the expression of target genes (glycogen phosphorylase gene, glycogen synthase gene, trehalose-6-phosphate synthase 1 gene, and trehalose-6-phosphate synthase 2 gene) in N. lugens and trehalase activity, thereby reducing glycogen and glucose content, increasing trehalose content, and regulating insect trehalose balance. GSK-3 can regulate the genes chitin synthase gene and glucose-6-phosphate isomerase gene involved in the chitin biosynthetic pathway of N. lugens. GSK-3 gene silencing can inhibit the synthesis of chitin N. lugens, resulting in abnormal phenotypes and increased mortality. These results indicated that a low expression of GSK-3 in N. lugens can regulate the metabolism of glycogen and trehalose through the insulin signal pathway and energy metabolism pathway, and can regulate the biosynthesis of chitin, which affects molting and wing formation. The relevant research results will help us to more comprehensively explore the molecular mechanism of the regulation of energy and chitin metabolism of insect glycogen synthase kinases in species such as N. lugens.
Collapse
Affiliation(s)
- Yan-Juan Ding
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Cai-Di Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
23
|
Yue XZ, Li D, Lv J, Liu K, Chen J, Zhang WQ. Involvement of mind the gap in the organization of the tracheal apical extracellular matrix in Drosophila and Nilaparvata lugens. INSECT SCIENCE 2020; 27:756-770. [PMID: 31240817 DOI: 10.1111/1744-7917.12699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The tracheal apical extracellular matrix (aECM) is vital for expansion of the tracheal lumen and supports the normal structure of the lumen to guarantee air entry and circulation in insects. Although it has been found that some cuticular proteins are involved in the organization of the aECM, unidentified factors still exist. Here, we found that mind the gap (Mtg), a predicted chitin-binding protein, is required for the normal formation of the apical chitin matrix of airway tubes in the model holometabolous insect Drosophila melanogaster. Similar to chitin, the Mtg protein was linearly arranged in the tracheal dorsal trunk of the tracheae in Drosophila. Decreased mtg expression in the tracheae seriously affected the viability of larvae and caused tracheal chitin spiral defects in some larvae. Analysis of mtg mutant showed that mtg was required for normal development of tracheae in embryos. Irregular taenidial folds of some mtg mutant embryos were found on either lateral view of tracheal dorsal trunk or internal view of transmission electron microscopy analysis. These abnormal tracheae were not fully filled with gas and accompanied by a reduction in tracheal width, which are characteristic phenotypes of tracheal aECM defects. Furthermore, in the hemimetabolous brown planthopper (BPH) Nilaparvata lugens, downregulation of NlCPAP1-N (a homolog of mtg) also led to the formation of abnormal tracheal chitin spirals and death. These results suggest that mtg and its homolog are involved in the proper organization of the tracheal aECMs in flies and BPH, and that this function may be conserved in insects.
Collapse
Affiliation(s)
- Xiang-Zhao Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kai Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Chen J, Lyu Z, Wang C, Cheng J, Lin T. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles in the biosynthesis of chitin and lipids in Heortia vitessoides (Lepidoptera: Crambidae). INSECT SCIENCE 2020; 27:212-223. [PMID: 30397994 PMCID: PMC7379938 DOI: 10.1111/1744-7917.12650] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 05/12/2023]
Abstract
Trehalose-6-phosphate synthase (TPS), an enzyme that hydrolyzes two glucose molecules to yield trehalose, plays a pivotal role in various physiological processes. In this study, we cloned the trehalose-6-phosphate synthase gene (HvTPS) and investigated its expression patterns in various tissues and developmental stages in Heortia vitessoides Moore (Lepidoptera: Crambidae). HvTPS was highly expressed in the fat body and after pupation or before molting. We knocked down TPS in H. vitessoides by RNA interference and found that 3.0 μg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes. Additionally, compared to the controls, TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0 μg of dsHvTPS. Furthermore, the silencing of HvTPS suppressed the expression of six key genes in the chitin biosynthesis pathway and one key gene related to lipid catabolism. The expression levels of two genes associated with lipid biosynthesis were upregulated. These results strongly suggest that HvTPS is essential for the normal growth and development of H. vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.
Collapse
Affiliation(s)
- Jing‐Xiang Chen
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Zi‐Hao Lyu
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Chun‐Yan Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Jie Cheng
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Tong Lin
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
25
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
26
|
Chen J, Li T, Pang R. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2020; 29:38-47. [PMID: 31260146 DOI: 10.1111/imb.12606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The chitin biosynthesis pathway is an important physiology process in arthropods. However, few microRNAs (miRNAs) involved in the regulation of the chitin biosynthesis pathway in insects have been reported until now. In this study, four groups of samples that either upregulated or downregulated the chitin biosynthesis pathway were collected for deep sequencing, and a total of 15 unique mature miRNAs with significantly different expression levels were found, including 11 known miRNAs and four novel miRNAs. Subsequently, we showed that miR-2703 and its new target gene chitin synthase 1a are important for ecdysone-induced chitin biosynthesis in Nilaparvata lugens, a serious insect pest of rice. The nymphs showed an obvious moulting defect phenotype, lower survival rate and significantly reduced chitin content after miR-2703 feeding or injection. Furthermore, we found that the transcription level of miR-2703 was not repressed by 20-hydroxyecdysone signalling after Broad-Complex (BR-C) double-stranded RNA (dsRNA) injection compared with the repressed levels after green fluorescent protein dsRNA injection, suggesting that the involvement of miR-2703 in the 20-hydroxyecdysone pathway contributes to BR-C activity. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in response to 20-hydroxyecdysone signalling.
Collapse
Affiliation(s)
- J Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - T Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - R Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Zhu B, Shan J, Li R, Liang P, Gao X. Identification and RNAi-based function analysis of chitinase family genes in diamondback moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2019; 75:1951-1961. [PMID: 30578597 DOI: 10.1002/ps.5308] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Insect chitinases play a vital part in chitin degradation in exoskeletons and gut linings during the molting process, and therefore are considered potential targets for new insecticide designs or RNA interference (RNAi)-based pest management. Systematic functional analysis of chitinase genes has already been conducted in several insect pests, but not Plutella xylostella. RESULTS In this study, 13 full-length chitinase transcripts were obtained in P. xylostella. Developmental and tissue-specific expression pattern analysis revealed that seven chitinase transcripts were periodically expressed during molting stage and mainly expressed in the integument or midgut, including PxCht3, PxCht5, PxCht6-2, PxCht7, PxCht8, PxCht10 and PxCht-h. RNAi-mediated knockdown of these specific expressed genes revealed that PxCht5 and PxCht10 were essential in larval molting, pupation and eclosion, and PxCht7 was indispensable only in eclosion. No significant effects were observed on insect survival or normal development when the rest chitinase transcripts were suppressed by RNAi. CONCLUSION Our results indicated the function of P. xylostella chitinase family genes during the molting process, and may provide potential targets for RNAi-based management of P. xylostella. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
miR-34 modulates wing polyphenism in planthopper. PLoS Genet 2019; 15:e1008235. [PMID: 31242182 PMCID: PMC6615638 DOI: 10.1371/journal.pgen.1008235] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/09/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
Polyphenism is a successful strategy adopted by organisms to adapt to environmental changes. Brown planthoppers (BPH, Nilaparvata lugens) develop two wing phenotypes, including long-winged (LW) and short-winged (SW) morphs. Though insulin receptor (InR) and juvenile hormone (JH) have been known to regulate wing polyphenism in BPH, the interaction between these regulators remains largely elusive. Here, we discovered that a conserved microRNA, miR-34, modulates a positive autoregulatory feedback loop of JH and insulin/IGF signaling (IIS) pathway to control wing polyphenism in BPH. Nlu-miR-34 is abundant in SW BPHs and suppresses NlInR1 by targeting at two binding sites in the 3'UTR of NlInR1. Overexpressing miR-34 in LW BPHs by injecting agomir-34 induces the development towards SW BPHs, whereas knocking down miR-34 in SW BPHs by injecting antagomir-34 induces more LW BPHs when another NlInR1 suppressor, NlInR2, is also suppressed simultaneously. A cis-response element of Broad Complex (Br-C) is found in the promoter region of Nlu-miR-34, suggesting that 20-hydroxyecdysone (20E) might be involved in wing polyphenism regulation. Topic application of 20E downregulates miR-34 expression but does not change wing morphs. On the other hand, JH application upregulates miR-34 expression and induces more SW BPHs. Moreover, knocking down genes in IIS pathway changes JH titers and miR-34 abundance. In all, we showed that miRNA mediates the cross talk between JH, 20E and IIS pathway by forming a positive feedback loop, uncovering a comprehensive regulation mechanism which integrates almost all known regulators controlling wing polyphenism in insects.
Collapse
|
29
|
Lu ZJ, Zhou CH, Yu HZ, Huang YL, Liu YX, Xie YX, Wang J, Hu W, Huang AJ, Su HN, Yang C. Potential roles of insect Tropomyosin1-X1 isoform in the process of Candidatus Liberibacter asiaticus infection of Diaphorina citri. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:125-135. [PMID: 30817914 DOI: 10.1016/j.jinsphys.2019.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the transmitting vector of Candidatus Liberibacter asiaticus (CLas), which causes citrus disease Huanglongbing (HLB). In recent years, control of HLB has been achieved by reducing the vector population. In the present study, we identified an isoform of D. citri tropomyosin (herein designated as DcTm1-X1). DcTm1-X1 was down-regulated in CLas-infected ACPs compared with uninfected ACPs. Bioinformatics analysis revealed that the full-length DcTm1-X1 is 2955 bp and encodes a protein of 284 amino acids with a deduced molecular weight of 32.15 kDa. Phylogenetic tree analysis suggested that DcTm1-X1 shares a high amino acid identity with its homolog in Acyrthosiphon pisum. Higher DcTm1-X1 expression levels were found in the leg of the psyllid by reverse transcription quantitative PCR (RT-qPCR). According to Blue Native PAGE analysis and mass spectrometric analysis, DcTm1-X1 interacts with citrate synthase (CS) and V-type proton ATPase subunit B-like (VAT). In addition, knockdown of DcTm1-X1 by RNA interference (RNAi) significantly increased the mortality rate of nymphs and the infection rate of CLas at different time points. Taken together, our results show that DcTm1-X1 might play an important role in response to CLas, but also lay a foundation for further research on the functions of DcTm1-X1.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Cheng-Hua Zhou
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Hai-Zhong Yu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China.
| | - Yu-Ling Huang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Ying-Xue Liu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China; Dayu Middle School, Ganzhou, China
| | - Yan-Xin Xie
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jie Wang
- Anhui Agricultural University, Hefei, China
| | - Wei Hu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Ai-Jun Huang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Hua-Nan Su
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Chao Yang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
30
|
Zhang Q, Dou W, Pan D, Chen EH, Niu JZ, Smagghe G, Wang JJ. Genome-Wide Analysis of MicroRNAs in Relation to Pupariation in Oriental Fruit Fly. Front Physiol 2019; 10:301. [PMID: 30967796 PMCID: PMC6439999 DOI: 10.3389/fphys.2019.00301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Insect metamorphosis is a complex process involving drastic morphological and physiological changes. microRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play key roles in regulating various biological processes, including metamorphosis, by post-transcriptional repression of mRNAs. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive insect pests in many Asian countries and the Pacific Islands. The regulatory role of miRNAs in B. dorsalis metamorphosis is unclear. To better understand the molecular regulatory mechanisms of miRNAs in pupariation, Illumina sequencing of the wandering stage (WS), the late WS and the white puparium stage of B. dorsalis were performed. Two hundred forty-nine miRNAs, including 184 known miRNAs and 65 novel miRNAs, were obtained. Among these miRNAs, 19 miRNAs were differentially expressed in pupariation, and eight miRNAs showed relative high expression levels (>50 TPM), of which five differentially expressed miRNAs (DEMs) had target differentially expressed genes (DEGs) predicted by the expected miRNA-mRNA negative regulation pattern using the Illumina HiSeq data. Four sets of DEMs and their predicted target DEGs were confirmed by qPCR. Of the four miRNAs, two miRNAs were down-regulated: miR-981, which may target pdpc, and Bdo-novel-mir-55, which potentially regulates spsX1, psB/C, and chit3. The other two miRNAs were up-regulated: let-7a-3p, which possibly controls lap, and Bdo-novel-mir-24, which may regulate ipc and sp1/2. This study provides a useful resource to elucidate the regulatory role of miRNAs and understand the molecular mechanisms of metamorphosis.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Burke WG, Kaplanoglu E, Kolotilin I, Menassa R, Donly C. RNA Interference in the Tobacco Hornworm, Manduca sexta, Using Plastid-Encoded Long Double-Stranded RNA. FRONTIERS IN PLANT SCIENCE 2019; 10:313. [PMID: 30923533 PMCID: PMC6426776 DOI: 10.3389/fpls.2019.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 05/05/2023]
Abstract
RNA interference (RNAi) is a promising method for controlling pest insects by silencing the expression of vital insect genes to interfere with development and physiology; however, certain insect Orders are resistant to this process. In this study, we set out to test the ability of in planta-expressed dsRNA synthesized within the plastids to silence gene expression in an insect recalcitrant to RNAi, the lepidopteran species, Manduca sexta (tobacco hornworm). Using the Manduca vacuolar-type H+ ATPase subunit A (v-ATPaseA) gene as the target, we first evaluated RNAi efficiency of two dsRNA products of different lengths by directly feeding the in vitro-synthesized dsRNAs to M. sexta larvae. We found that a long dsRNA of 2222 bp was the most effective in inducing lethality and silencing the v-ATPaseA gene, when delivered orally in a water droplet. We further transformed the plastid genome of the M. sexta host plant, Nicotiana tabacum, to produce this long dsRNA in its plastids and performed bioassays with M. sexta larvae on the transplastomic plants. In the tested insects, the plastid-derived dsRNA had no effect on larval survival and no statistically significant effect on expression of the v-ATPaseA gene was observed. Comparison of the absolute quantities of the dsRNA present in transplastomic leaf tissue for v-ATPaseA and a control gene, GFP, of a shorter size, revealed a lower concentration for the long dsRNA product compared to the short control product. We suggest that stability and length of the dsRNA may have influenced the quantities produced in the plastids, resulting in inefficient RNAi in the tested insects. Our results imply that many factors dictate the effectiveness of in planta RNAi, including a likely trade-off effect as increasing the dsRNA product length may be countered by a reduction in the amount of dsRNA produced and accumulated in the plastids.
Collapse
Affiliation(s)
- William G. Burke
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
32
|
Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (Acyrthosiphon pisum). Sci Rep 2019; 9:3694. [PMID: 30842508 PMCID: PMC6403427 DOI: 10.1038/s41598-019-39837-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/25/2019] [Indexed: 01/13/2023] Open
Abstract
The pea aphid, Acyrthosiphon pisum, is an important agricultural pest and an ideal model organism for various studies. Chitin synthase (CHS) catalyses chitin synthesis, a critical structural component of insect exoskeletons. Here, we identified a CHS gene from A. pisum, ApisCHS. The ApisCHS expression profiles showed that ApisCHS was expressed in various developmental stages and in all tested tissues of A. pisum, including the epidermis, embryo, gut and haemolymph. Notably, ApisCHS exhibited peak expression in the middle of each nymphal period and was extremely highly expressed in the epidermis and embryo. RNA interference (RNAi) showed that ~600 ng of dsRNA is an effective dose for gene silencing by injection for dsRNA delivery; moreover, 1200 ng·μL−1 dsRNA induced CHS gene silencing by a plant-mediated feeding approach. A 44.7% mortality rate and a 51.3% moulting rate were observed 72 h after injection of dsApisCHS into fourth-instar nymphs, compared with the levels in the control (injected with dsGFP). Moreover, a longer period was required for nymph development and a 44.2% deformity rate among newborn nymphs was obtained upon ingestion of dsApisCHS. These results suggest that ApisCHS plays a critical role in nymphal growth and embryonic development in pea aphids, and is a potential target for RNAi-based aphid pest control.
Collapse
|
33
|
Chen J, Li TC, Pang R, Yue XZ, Hu J, Zhang WQ. Genome-Wide Screening and Functional Analysis Reveal That the Specific microRNA nlu-miR-173 Regulates Molting by Targeting Ftz-F1 in Nilaparvata lugens. Front Physiol 2018; 9:1854. [PMID: 30618850 PMCID: PMC6306441 DOI: 10.3389/fphys.2018.01854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Molting is a crucial physiological behavior during arthropod growth. In the past few years, molting as well as chitin biosynthesis triggered by molting, is subject to regulation by miRNAs. However, how many miRNAs are involved in insect molting at the genome-wide level remains unknown. Results: We deeply sequenced four samples obtained from nymphs at the 2nd-3rd and 4th-5th instars, and then identified 61 miRNAs conserved in the Arthropoda and 326 putative novel miRNAs in the brown planthopper Nilaparvata lugens, a fearful pest of rice. A total of 36 mature miRNAs with significant different expression levels at the genome scale during molting, including 19 conserved and 17 putative novel miRNAs were identified. After comparing the expression profiles, we found that most of the targets of 36 miRNAs showing significantly differential expression were involved in energy and hormone pathways. One of the 17 putative novel miRNAs, nlu-miR-173 was chosen for functional study. nlu-miR-173 acts in 20-hydroxyecdysone signaling through its direct target, N. lugens Ftz-F1(NlFtz-F1), a transcription factor. Furthermore, we found that the transcription of nlu-miR-173 was promoted by Broad-Complex (BR-C), suggesting that its involvement in the 20-hydroxyecdysone pathway contributes to proper molting function. Conclusion: We provided a comprehensive resource of miRNAs associated with insect molting and identified a novel miRNA as a potential target for pest control.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Teng Chao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. PEST MANAGEMENT SCIENCE 2018; 74:1239-1250. [PMID: 29194942 DOI: 10.1002/ps.4813] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/09/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moises Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Ericmar Avila Dos Santos
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Deise Cagliari
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Wang JD, Wang YR, Wang YZ, Wang WZ, Wang R, Gao SJ. RNA interference of tubulin genes has lethal effects in Mythimna separate. Gene 2018; 670:1-6. [PMID: 29802997 DOI: 10.1016/j.gene.2018.05.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
RNAi (RNA interference) is a technology for silencing expression of target genes via sequence-specific double-stranded RNA (dsRNA). Recently, dietary introduction of bacterially expressed dsRNA has shown great potential in the field of pest management. Identification of potential candidate genes for RNAi is the first step in this application. The oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae) is a polyphagous, migratory pest, and outbreaks have led to severe crop damage in China. In the present study, two tubulin genes were chosen as target genes because of their crucial role in insect development. Both Msα-tubulin and Msβ-tubulin genes are expressed across all life stages and are highly expressed in the head and epidermis. Feeding of bacterially expressed dsRNA of Msα-tubulin and Msβ-tubulin to third-instar larvae knocked down target mRNAs. A lethal phenotype was observed with knockdown of Msα-tubulin and Msβ-tubulin concurrent with reduction in body weight. Bacterially expressed dsRNA can be used to control M. separata, and tubulin genes could be effective candidate genes for an RNAi-based control strategy of this pest.
Collapse
Affiliation(s)
- Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| | - Ya-Ru Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yong-Zhi Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Wei-Zhong Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Rong Wang
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| |
Collapse
|
36
|
Zhang L, Qiu LY, Yang HL, Wang HJ, Zhou M, Wang SG, Tang B. Study on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene. Front Physiol 2017; 8:750. [PMID: 29033849 PMCID: PMC5627005 DOI: 10.3389/fphys.2017.00750] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the regulating role of trehalase (TRE) genes on wing bud formation has been studied by RNAi. In this paper, the activity levels of TRE and the contents of the two sugars trehalose and glucose were negatively correlated indicating the potential role of TRE in the molting process. In addition, NlTRE1-1 and NlTRE2 were expressed at higher levels in wing bud tissue than in other tissues, and abnormal molting and wing deformity or curling were noted 48 h after the insect was injected with any double-stranded TRE (dsTRE), even though different TREs have compensatory functions. The expression levels of NlCHS1b, NlCht1, NlCht2, NlCht6, NlCht7, NlCht8, NlCht10, NlIDGF, and NlENGase decreased significantly 48 h after the insect was injected with a mixture of three kinds of dsTREs. Similarly, the TRE inhibitor validamycin can inhibit NlCHS1 and NlCht gene expression. However, the wing deformity was the result of the NlIDGF, NlENGase, NlAP, and NlTSH genes being inhibited when a single dsTRE was injected. These results demonstrate that silencing of TRE gene expression can lead to wing deformities due to the down-regulation of the AP and TSH genes involved in wing development and that the TRE inhibitor validamycin can co-regulate chitin metabolism and the expression of wing development-related genes in wing bud tissue. The results provide a new approach for the prevention and management of N. lugens.
Collapse
Affiliation(s)
- Lu Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Li Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
37
|
Qu Y, Xu J, Zhou H, Dong R, Kang M, Zhao J. Chitin Oligosaccharide (COS) Reduces Antibiotics Dose and Prevents Antibiotics-Caused Side Effects in Adolescent Idiopathic Scoliosis (AIS) Patients with Spinal Fusion Surgery. Mar Drugs 2017; 15:md15030070. [PMID: 28335413 PMCID: PMC5367027 DOI: 10.3390/md15030070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/19/2017] [Accepted: 03/08/2017] [Indexed: 01/13/2023] Open
Abstract
Antibiotics are always considered for surgical site infection (SSI) in adolescent idiopathic scoliosis (AIS) surgery. However, the use of antibiotics often causes the antibiotic resistance of pathogens and side effects. Thus, it is necessary to explore natural products as drug candidates. Chitin Oligosaccharide (COS) has anti-inflammation and anti-bacteria functions. The effects of COS on surgical infection in AIS surgery were investigated. A total of 312 AIS patients were evenly and randomly assigned into control group (CG, each patient took one-gram alternative Azithromycin/Erythromycin/Cloxacillin/Aztreonam/Ceftazidime or combined daily), experiment group (EG, each patient took 20 mg COS and half-dose antibiotics daily), and placebo group (PG, each patient took 20 mg placebo and half-dose antibiotics daily). The average follow-up was one month, and infection severity and side effects were analyzed. The effects of COS on isolated pathogens were analyzed. SSI rates were 2%, 3% and 8% for spine wounds and 1%, 2% and 7% for iliac wound in CG, EG and PG (p < 0.05), respectively. COS reduces the side effects caused by antibiotics (p < 0.05). COS improved biochemical indexes and reduced the levels of interleukin (IL)-6 and tumor necrosis factor (TNF) alpha. COS reduced the antibiotics dose and antibiotics-caused side effects in AIS patients with spinal fusion surgery by improving antioxidant and anti-inflammatory activities. COS should be developed as potential adjuvant for antibiotics therapies.
Collapse
Affiliation(s)
- Yang Qu
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Jinyu Xu
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Haohan Zhou
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Rongpeng Dong
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Mingyang Kang
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| |
Collapse
|