1
|
Messéan A, Álvarez F, Devos Y, Camargo AM. Assessment of the 2021 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2023; 21:e8411. [PMID: 38075629 PMCID: PMC10699111 DOI: 10.2903/j.efsa.2023.8411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Following a request from the European Commission, the European Food Safety Authority (EFSA) assessed the 2021 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Evidence provided in the PMEM report shows that farmers growing maize MON 810 in Spain complied partially with refuge requirements, while full compliance was achieved in Portugal. Cry1Ab susceptibility tests performed on European and Mediterranean corn borer populations collected from north-eastern Spain in 2021 indicated no symptoms of resistance evolution to maize MON 810. However, unexpected damage to maize MON 810 plants was observed in a field trial in the province of Girona (north-eastern Spain), which may point to the presence of resistance alleles in this region. Information retrieved through farmer questionnaires and the scientific literature reveals no unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Overall, EFSA concludes that the evidence reported in the 2021 PMEM report does not invalidate its previous conclusions on the safety of maize MON 810. The possible presence of Cry1Ab resistance alleles at frequencies leading to damage to maize MON 810 plants in Girona requires twofold actions: (1) increase monitoring efforts in this area; and (2) implement remedial measures to limit the suspected evolution and spread of resistance. As in previous years, EFSA identified shortcomings on resistance monitoring that need revision. In particular, full refuge compliance must be achieved in Spain. Moreover, the sensitivity of the monitoring plan must be increased, which can be achieved by replacing the current susceptibility assays by periodic F2 screens. EFSA also recommends the consent holder to revise the farmer questionnaires to account for the emergence of teosinte as a noxious agricultural weed in maize MON 810-growing areas in Spain.
Collapse
|
2
|
García M, García-Benítez C, Ortego F, Farinós GP. Monitoring Insect Resistance to Bt Maize in the European Union: Update, Challenges, and Future Prospects. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:275-288. [PMID: 36610405 PMCID: PMC10125040 DOI: 10.1093/jee/toac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 05/30/2023]
Abstract
Transgenic maize producing the Cry1Ab toxin of Bacillus thuringiensis (Bt maize) was approved for cultivation in the European Union (EU) in 1998 to control the corn borers Sesamia nonagrioides (Lefèbvre) and Ostrinia nubilalis (Hübner). In the EU since then, Cry1Ab is the only Bt toxin produced by Bt maize and Spain is the only country where Bt maize has been planted every year. In 2021, about 100,000 hectares of Bt maize producing Cry1Ab were cultivated in the EU, with Spain accounting for 96% and Portugal 4% of this area. In both countries, Bt maize represented less than 25% of all maize planted in 2021, with a maximum regional adoption of 64% Bt maize in northeastern Spain. Insect resistance management based on the high-dose/refuge strategy has been implemented in the EU since 1998. This has been accompanied by monitoring to enable early detection of resistance. The monitoring data from laboratory bioassays show no decrease in susceptibility to Cry1Ab had occurred in either pest as of 2021. Also, control failures have not been reported, confirming that Bt maize producing Cry1Ab remains effective against both pests. Conditions in the EU preventing approval of new genetically modified crops, including maize producing two or more Bt toxins targeting corn borers, may limit the future effectiveness of resistance management strategies.
Collapse
Affiliation(s)
| | | | - Félix Ortego
- Laboratory of Applied Entomology for Human and Plant Health, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | | |
Collapse
|
3
|
Arias-Martín M, Haidukowski M, Farinós GP, Patiño B. Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction. Toxins (Basel) 2021; 13:780. [PMID: 34822564 PMCID: PMC8620457 DOI: 10.3390/toxins13110780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Maize expressing Cry1Ab insecticidal toxin (Bt maize) is an effective method to control Sesamia nonagrioides and Ostrinia nubilalis, the most damaging corn borers of southern Europe. In this area, maize is prone to Fusarium infections, which can produce mycotoxins that pose a serious risk to human and animal health, causing significant economic losses in the agrifood industry. To investigate the influence of corn borer damage on the presence of Fusarium species and their mycotoxins, Bt maize ears and insect-damaged ears of non-Bt maize were collected from commercial fields in three Bt maize growing areas in Spain, and differences in contamination were assessed. Additionally, larvae of both borer species were collected to evaluate their role as vectors of these molds. Non-Bt maize ears showed significantly higher presence of F. verticillioides, F. proliferatum, and F. subglutinans than Bt maize ears. For the first time, Fusarium species have been isolated from larvae of the two species. The most frequently found mycotoxins in ears were fumonisins, with non-Bt ears being significantly more contaminated than those of Bt maize. High levels of fumonisins were shown to correlate with the occurrence of corn borers in the ear and the presence of F. verticillioides and F. proliferatum.
Collapse
Affiliation(s)
- María Arias-Martín
- Laboratory of Applied Entomology for Human and Plant Health, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy;
| | - Gema P. Farinós
- Laboratory of Applied Entomology for Human and Plant Health, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Belén Patiño
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| |
Collapse
|
4
|
Álvarez-Alfageme F, Devos Y, Camargo AM, Arpaia S, Messéan A. Managing resistance evolution to transgenic Bt maize in corn borers in Spain. Crit Rev Biotechnol 2021; 42:201-219. [PMID: 34154477 DOI: 10.1080/07388551.2021.1931018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since 1998, genetically engineered Bt maize varieties expressing the insecticidal Cry1Ab protein (i.e. event MON 810) have been grown in the European Union (EU), mainly in Spain. These varieties confer resistance against the European and Mediterranean corn borer (ECB and MCB), which are the major lepidopteran maize pests in the EU, particularly in Mediterranean areas. However, widespread, repeated and exclusive use of Bt maize is anticipated to increase the risk of Cry1Ab resistance to evolve in corn borer populations. To delay resistance evolution, typically, refuges of non-Bt maize are planted near or adjacent to, or within Bt maize fields. Moreover, changes in Cry1Ab susceptibility in field populations of corn borers and unexpected damage to maize MON 810, due to corn borers, are monitored on an annual basis. After two decades of Bt maize cultivation in Spain, neither resistant corn borer populations nor farmer complaints on unexpected field damage have been reported. However, whether the resistance monitoring strategy followed in Spain, currently based on discriminating concentration bioassays, is sufficiently sensitive to timely detect early warning signs of resistance in the field remains a point of contention. Moreover, the Cry1Ab resistance allele frequency to Bt maize, which has recently been estimated in MCB populations from north-eastern Spain, might exceed that recommended for successful resistance management. To ensure Bt maize durability in Spain, it is key that adequate resistance management approaches, including monitoring of resistance and farmer compliance with refuge requirements, continue to be implemented and are incorporated in integrated pest management schemes.
Collapse
Affiliation(s)
| | | | | | | | - Antoine Messéan
- INRAE, Eco-Innov, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
5
|
Muller H, Ogereau D, Da Lage JL, Capdevielle C, Pollet N, Fortuna T, Jeannette R, Kaiser L, Gilbert C. Draft nuclear genome and complete mitogenome of the Mediterranean corn borer, Sesamia nonagrioides, a major pest of maize. G3-GENES GENOMES GENETICS 2021; 11:6272226. [PMID: 33963397 PMCID: PMC8495949 DOI: 10.1093/g3journal/jkab155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/24/2021] [Indexed: 12/29/2022]
Abstract
The Mediterranean corn borer (Sesamia nonagrioides, Noctuidae, Lepidoptera) is a major pest of maize in Europe and Africa. Here, we report an assembly of the nuclear and mitochondrial genome of a pool of inbred males and females third-instar larvae, based on short- and long-read sequencing. The complete mitochondrial genome is 15,330 bp and contains all expected 13 and 24 protein-coding and RNA genes, respectively. The nuclear assembly is 1021 Mb, composed of 2553 scaffolds and it has an N50 of 1105 kb. It is more than twice larger than that of all Noctuidae species sequenced to date, mainly due to a higher repeat content. A total of 17,230 protein-coding genes were predicted, including 15,776 with InterPro domains. We provide detailed annotation of genes involved in sex determination (doublesex, insulin-like growth factor 2 mRNA-binding protein, and P-element somatic inhibitor) and of alpha-amylase genes possibly involved in interaction with parasitoid wasps. We found no evidence of recent horizontal transfer of bracovirus genes from parasitoid wasps. These genome assemblies provide a solid molecular basis to study insect genome evolution and to further develop biocontrol strategies against S. nonagrioides.
Collapse
Affiliation(s)
- Héloïse Muller
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon Cedex 07, France
| | - David Ogereau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean-Luc Da Lage
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Claire Capdevielle
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Taiadjana Fortuna
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Rémi Jeannette
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Laure Kaiser
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
M Camargo A, Arias‐Martín M, Castañera P, P Farinós G. Performance of Sesamia nonagrioides on cultivated and wild host plants: Implications for Bt maize resistance management. PEST MANAGEMENT SCIENCE 2020; 76:3657-3666. [PMID: 32418304 PMCID: PMC7586834 DOI: 10.1002/ps.5913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Sesamia nonagrioides is an important maize pest in the Mediterranean basin that is effectively controlled by Cry1Ab-expressing maize (Bt maize). The continued cultivation of Bt maize in Spain exerts high selection pressure on the target pests, which could lead to the development of resistance. Provision of refuges of non-Bt plants is an essential component in the high-dose/refuge (HDR) strategy to delay resistance evolution. Here we analyze the suitability of cultivated (rice and sorghum) and wild (Johnsongrass, cattail, common reed and giant reed) plants, reported as hosts of S. nonagrioides, for larval development and oviposition of this pest compared to maize, and we evaluate their potential role in delaying resistance development to Bt maize. RESULTS Bioassays conducted with plant pieces or whole plants showed that the larval cycle could only be completed in the three cultivated plants and in Johnsongrass. Females showed a strong preference for ovipositing on maize in comparison with sorghum or rice. Although young larvae consumed more sorghum than maize in two-choice bioassays, both larvae and adults had a better performance (shorter larval period and higher pupal weight, fecundity and fertility) when larvae fed on maize throughout their larval stage than when they fed on sorghum or rice. CONCLUSION None of the alternative hosts of S. nonagrioides tested here should be considered as natural unstructured refuges within the HDR strategy for Bt maize and this pest in Spain, as some of the necessary requirements to fulfill this strategy would not be met. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Camargo
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| | - María Arias‐Martín
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| | - Pedro Castañera
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| | - Gema P Farinós
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| |
Collapse
|
7
|
Bertho L, Schmidt K, Schmidtke J, Brants I, Cantón RF, Novillo C, Head G. Results from ten years of post-market environmental monitoring of genetically modified MON 810 maize in the European Union. PLoS One 2020; 15:e0217272. [PMID: 32330131 PMCID: PMC7182268 DOI: 10.1371/journal.pone.0217272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/19/2020] [Indexed: 11/18/2022] Open
Abstract
In European regulations for the deliberate release into the environment of genetically modified organisms (GMO), the objective of General Surveillance in Post-Market Environmental Monitoring is defined as the identification of the occurrence of adverse effects of the GMO or its use which were not anticipated in the environmental risk assessment (ERA). Accompanying the commercial cultivation in the EU of maize event MON 810, General Surveillance was implemented by Monsanto, the authorization holder, on a voluntary basis. We carried out a statistical analysis on the pooled results of ten years of farmer questionnaires, which were a part of this General Surveillance, amounting to 2,627 farmer fields in eight European countries in the period 2006-2015. This analysis did not reveal any unexpected adverse effects associated with the cultivation of MON 810. Results from farmer questionnaires confirmed that the cultivation of MON 810 resulted in a significant reduction in the use of pesticides, efficient protection against the target pests, and healthier, higher yielding crops compared to conventional maize. MON 810 also had reduced susceptibility to disease and pests when compared to conventional maize. Monitoring characteristics related to environment and wildlife revealed no significant differences between MON 810 and conventional maize. Literature searches, that were also conducted as part of General Surveillance, identified a comprehensive set of publications addressing environmental safety as well as food and feed safety aspects of MON 810. None of the publications indicated any adverse effect of MON 810 that was not anticipated in the initial ERA, nor did they lead to a change in the conclusions of the initial risk assessment that demonstrated the safety of MON 810. The development of resistance by the target pests (Ostrinia nubilalis, ECB and Sesamia nonagrioides, MCB) was the only potential adverse effect identified in the ERA of MON 810 cultivation in the EU. The extensive safety data package for MON 810, the robust weight of evidence demonstrating both its safety and benefits, and the history of safe use of MON 810 for 15 years in the EU, indicates that focussing the General Surveillance of MON 810 on literature searches and farmer complaint systems would be appropriately protective. This will allow the identification of potential adverse effect not anticipated in the initial ERA without the intensive effort and organizational challenges of farmer questionnaires.
Collapse
Affiliation(s)
- Lieselot Bertho
- Monsanto Company, Saint Louis, Missouri, United States of America
| | | | | | | | | | | | - Graham Head
- Monsanto Company, Saint Louis, Missouri, United States of America
| |
Collapse
|
8
|
Álvarez F, Camargo AM, Devos Y. Assessment of the 2017 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810. EFSA J 2019; 17:e05742. [PMID: 32626360 PMCID: PMC7009071 DOI: 10.2903/j.efsa.2019.5742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, EFSA assessed the 2017 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Like previous years, partial compliance with refuge requirements is reported for Spain. European and Mediterranean corn borer populations collected from North-eastern Spain during the 2017 maize growing season and tested for Cry1Ab susceptibility show no symptoms of resistance to maize MON 810. No complaints about unexpected field damage caused by corn borers were received through the farmer complaint system. The assessment of farmer questionnaires and relevant scientific publications does not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. No information about the use of existing networks involved in environmental monitoring is provided. Overall, EFSA concludes that the evidence reported in the 2017 PMEM report does not invalidate previous EFSA and GMO Panel evaluations on the safety of maize MON 810. As in previous years, EFSA identifies methodological and reporting shortcomings pertaining to resistance monitoring that need revision in future PMEM reports. In particular, the monitoring plan, as implemented in 2017, is not sufficiently sensitive to detect the recommended 3% resistance allele frequency. Consequently, EFSA strongly recommends the consent holder to: (1) achieve full compliance with refuge requirements in areas where maize MON 810 adoption is high (i.e. North-eastern Spain); (2) increase the sensitivity of the resistance monitoring plan and address previously mentioned methodological, analytical and/or reporting limitations for resistance monitoring and farmer questionnaires; and (3) perform a F2-screen on European and Mediterranean corn borer populations from North-eastern Spain. Moreover, relevant stakeholders should implement a methodological framework to enable making best use of existing networks involved in environmental monitoring for the general surveillance of genetically modified plants.
Collapse
|
9
|
Álvarez F, Devos Y, Georgiadis M, Messéan A, Waigmann E. Annual post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in 2016. EFSA J 2018; 16:e05287. [PMID: 32625921 PMCID: PMC7009447 DOI: 10.2903/j.efsa.2018.5287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, EFSA assessed the annual post-market environmental monitoring (PMEM) report for the 2016 growing season of the Cry1Ab-expressing maize event MON 810 provided by Monsanto Europe S.A. Partial compliance with refuge requirements was reported in Spain, as observed in previous years. EFSA reiterates the need to achieve full compliance in areas of high maize MON 810 adoption to delay resistance evolution, and therefore advocates increasing the level of compliance in such areas. Resistance monitoring data do not indicate a decrease in susceptibility to the Cry1Ab protein in the field corn borer populations tested in the 2016 season. However, EFSA identified some methodological and reporting limitations pertaining to resistance monitoring that need improvement in future PMEM reports. No complaints related to corn borer infestation of maize MON 810 were received via the farmer alert system during the 2016 cultivation season. EFSA encourages the consent holder to provide more information on this complementary resistance monitoring tool. The data on general surveillance do not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. EFSA reiterates its recommendations on the methodology and analysis of farmer questionnaires, and considers that future literature searches on maize MON 810 performed in the context of annual PMEM reports should follow the guidelines given in the 2017 EFSA explanatory note on literature searching. Moreover, EFSA encourages relevant stakeholders to implement a methodological framework that enables the use of existing networks in the broader context of environmental monitoring. EFSA concludes that no new evidence has been reported in the 2016 PMEM report that would invalidate previous EFSA evaluations on the safety of maize MON 810.
Collapse
|
10
|
First detection of a Sesamia nonagrioides resistance allele to Bt maize in Europe. Sci Rep 2018; 8:3977. [PMID: 29507354 PMCID: PMC5838095 DOI: 10.1038/s41598-018-21943-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/09/2018] [Indexed: 01/09/2023] Open
Abstract
The Ebro Valley (Spain) is the only hotspot area in Europe where resistance evolution of target pests to Cry1Ab protein is most likely, owing to the high and regular adoption of Bt maize (>60%). The high-dose/refuge (HDR) strategy was implemented to delay resistance evolution, and to be effective it requires the frequency of resistance alleles to be very low (<0.001). An F2 screen was performed in 2016 to estimate the frequency of resistance alleles in Sesamia nonagrioides from this area and to evaluate if the HDR strategy is still working effectively. Out of the 137 isofemale lines screened on Cry1Ab maize leaf tissue, molted larvae and extensive feeding were observed for two consecutive generations in one line, indicating this line carried a resistance allele. The frequency of resistance alleles in 2016 was 0.0036 (CI 95% 0.0004–0.0100), higher but not statistically different from the value obtained in 2004–2005. Resistance does not seem to be evolving faster than predicted by a S. nonagrioides resistance evolution model, but the frequency of resistance is now triple the value recommended for an effective implementation of the HDR strategy. Owing to this, complementary measures should be considered to further delay resistance evolution in the Ebro Valley.
Collapse
|