1
|
Barbosa GG, Silva TL, de Oliveira APS, de Albuquerque Lima T, da Silva PM, de Santana CJC, Vieira JRC, de Sousa DR, Souza FAL, Pereira R, Zingali RB, Costa RMPB, Paiva PMG, Rodrigues GG, Castro MS, Napoleão TH. Cutaneous glands of the striped toad, Rhinella crucifer (Wied-Neuwied, 1821) (Amphibia: Bufonidae): Histological study and bioactivities of glandular secretions. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110983. [PMID: 38688407 DOI: 10.1016/j.cbpb.2024.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
This study investigated the morphology of Rhinella crucifer cutaneous glands, as well as the protein/peptide profiles and bioactivities of body gland secretions (BGS) and parotoid macrogland secretions (PS). The parotoid as well as dorsal and ventral skin fragments of male and female individuals were processed for histological analysis. The protein and peptide profiles of male and female gland secretions were evaluated. Male secretions were also assessed for proteolytic, trypsin inhibiting, hemagglutinating, hemolytic, antimicrobial, and anticoagulant activities. The R. crucifer skin structure presented protuberances that are clearly visible and formed by the integument, which has cutaneous glands throughout the body. An average of 438 and 333 glands were identified in males in females, respectively. No significant differences were observed in the distribution of glands across the body as well as for area and perimeter of glands. Differences were observed in protein composition between the PS and BGS from males and females, and secretions from animals collected from undisturbed and anthropogenically disturbed areas. Proteins with similarities to catalase and elongation factor 1-alpha were detected in the PS. Zymography revealed proteolytic activity in both male BGS and PS. Male BGS showed antibacterial activity against Enterococcus faecalis and Escherichia coli and anticoagulant activity, being able to prolong prothrombin time by 6.34-fold and activated partial thromboplastin time by 2.17-fold. Finally, male PS and BGS caused a maximum hemolysis degree of 1.4%. The data showed that the cutaneous secretions of R. crucifer are potentially promising for biotechnological prospecting.
Collapse
Affiliation(s)
- Géssica Gomes Barbosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Tulíbia Laurindo Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Thâmarah de Albuquerque Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Carlos José Correia de Santana
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Dyeime Ribeiro de Sousa
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Assis Leite Souza
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Rafael Pereira
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Mariana S Castro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Nova ICV, de Almeida WA, Procópio TF, Godoy RSM, Miranda FR, Barbosa RC, Nascimento JDS, Paiva PMG, Ferreira MRA, Soares LAL, Pimenta PFP, Martins GF, Navarro DMDAF, Napoleão TH, Pontual EV. Extract from Opuntia ficus-indica cladode delays the Aedes aegypti larval development by inducing an axenic midgut environment. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e21872. [PMID: 35112391 DOI: 10.1002/arch.21872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the effects of acute exposure of Aedes aegypti third instar (L3 ) larvae to the saline extract of Opuntia ficus-indica cladodes on the biological cycle and fertility of the emerging adults. For this, larvae were treated for 24 h with the extract at ¼ LC50 (lethal concentration to kill 50% of larvae), ½ LC50 or LC50 ; the development and reproduction of the emerged adults were evaluated after a recovery period of 9 days. The resistance of proteins in the extract to hydrolysis by L3 digestive enzymes and histomorphological alterations in the larval midgut were also investigated. The extract contained lectin, flavonoids, cinnamic derivatives, terpenes, steroids, and reducing sugars. It showed a LC50 of 3.71% for 48 h. The data indicated mean survival times similar in control and extract treatments. It was observed development delay in extract-treated groups, with a lower number of adults than in control. However, the females that emerged laid similar number of eggs in control and treatments. Histological evaluation revealed absence of bacterial and fungal microorganisms in the food content in midguts from larvae treated with cladode extract. Electrophoresis revealed that three polypeptides in the extract resisted to hydrolysis by L3 digestive proteases for 90 min. The lectin activity was not altered even after 24-h incubation with the enzymes. In conclusion, the extract from O. ficus-indica can delay the development of Ae. aegypti larvae, which may be linked to induction of an axenic environment at larval midgut and permanence of lectin activity even after proteolysis.
Collapse
Affiliation(s)
- Isabella C V Nova
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Welton A de Almeida
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thamara F Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Raquel S M Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franciane R Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Renata C Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica da Silva Nascimento
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Magda R A Ferreira
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Luiz A L Soares
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Paulo F P Pimenta
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gustavo F Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Maria do Amaral F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Emmanuel V Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
3
|
Silva DGR, Melo AES, da Costa JA, Bezerra ICF, Ferreira MRA, Nascimento JDS, dos Santos MAG, Paiva PMG, Navarro DMDAF, Soares LAL, Sá RA, Napoleão TH. Insecticidal and antifungal activities of saline extract from Abarema cochliocarpos bark against pests with relevance to human health and agronomy. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Zeng Q, Lin F, Zeng L, Deng Y, Li L. Purification and characterization of a novel immunomodulatory lectin from Artocarpus hypargyreus Hance. Int Immunopharmacol 2019; 71:285-294. [DOI: 10.1016/j.intimp.2019.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/17/2023]
|
5
|
Napoleão TH, Albuquerque LP, Santos ND, Nova IC, Lima TA, Paiva PM, Pontual EV. Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. PEST MANAGEMENT SCIENCE 2019; 75:1212-1222. [PMID: 30306668 DOI: 10.1002/ps.5233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/29/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The midgut of insects is involved in digestion, osmoregulation and immunity. Although several defensive strategies are present in this organ, its organization and function may be disturbed by some insecticidal agents, including bioactive proteins like lectins and protease inhibitors (PIs) from plants. PIs interfere with digestion, leading to poor nutrient absorption and decreasing amino acid bioavailability. Intake of PIs can delay development, cause deformities and reduce fertility. Ingestion of PIs may lead to changes in the set of proteases secreted in the insect gut, but this response is often insufficient and results in aggravation of the malnutrition status. Lectins are proteins that are able to interact with glycoconjugates, including those linked to cell surfaces. Their effects on the midgut include disruption of the peritrophic matrix, brush border and secretory cell layer; induction of apoptosis and oxidative stress; interference with nutrient absorption and transport proteins; and damaging effects on symbionts. In addition, lectins can cross the intestinal barrier and reach the hemolymph. The establishment of resistant insect populations due to selective pressure resulting from massive use of a bioactive protein is an actual possibility, but this can be minimized by the multiple mode-of-action of these proteins, mainly the lectins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane P Albuquerque
- Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Teresina, Brazil
| | - Nataly Dl Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Isabella Cv Nova
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thâmarah A Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Patrícia Mg Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Emmanuel V Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Ferreira RS, Brito MV, Napoleão TH, Silva MCC, Paiva PMG, Oliva MLV. Effects of two protease inhibitors from Bauhinia bauhinoides with different specificity towards gut enzymes of Nasutitermes corniger and its survival. CHEMOSPHERE 2019; 222:364-370. [PMID: 30710762 DOI: 10.1016/j.chemosphere.2019.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Two recombinant protease inhibitors from Bauhinia bauhinioides, rBbKI (kallikrein inhibitor) and rBbCI (cruzipain inhibitor) were evaluated for insecticidal activity against workers and soldiers of Nasutitermes corniger (order: Isoptera; family: Termitidae) through the inhibitors' effect on the insect's gut enzymes. The inhibitor rBbKI was more effective than rBbCI in inhibiting the termite's gut enzymes. The kallikrein inhibitor showed termiticidal activity in workers with an LC50 of 0.9 mg mL-1 after 4 days. Conversely, rBbKI did not affect the survival of soldiers and rBbCI did not show termiticidal activity against N. corniger. The two inhibitors showed different specificity towards the termite's gut enzymes, representing interesting tools to characterize N. corniger enzymes. The different effects of rBbKI and rBbCI on the termite's enzymes and survival may be linked to slight structural differences between these inhibitors.
Collapse
Affiliation(s)
- R S Ferreira
- Biochemistry Department at the Federal University of São Paulo, 04044-020, São Paulo, SP, Brazil
| | - M V Brito
- Biochemistry Department at the Federal University of São Paulo, 04044-020, São Paulo, SP, Brazil
| | - T H Napoleão
- Biochemistry Department at the Federal University of Pernambuco, 50670-420, Recife, PE, Brazil
| | - M C C Silva
- Biochemistry Department at the Federal University of São Paulo, 04044-020, São Paulo, SP, Brazil
| | - P M G Paiva
- Biochemistry Department at the Federal University of Pernambuco, 50670-420, Recife, PE, Brazil
| | - M L V Oliva
- Biochemistry Department at the Federal University of São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
da Silva JDF, da Silva SP, da Silva PM, Vieira AM, de Araújo LCC, de Albuquerque Lima T, de Oliveira APS, do Nascimento Carvalho LV, da Rocha Pitta MG, de Melo Rêgo MJB, Pinheiro IO, Zingali RB, do Socorro de Mendonça Cavalcanti M, Napoleão TH, Paiva PMG. Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int J Biol Macromol 2018; 126:291-297. [PMID: 30583005 DOI: 10.1016/j.ijbiomac.2018.12.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Lectins are carbohydrate-binding proteins broadly distributed in plants and have several biological functions, including antimicrobial action. Portulaca elatior is a Caatinga plant whose chemical composition and biotechnological potential have not been extensively studied. In this work, a lectin was isolated from P. elatior root extract and evaluated for antimicrobial activity. The P. elatior root lectin (PeRoL) showed native molecular mass of 33 kDa, pI 3.8 and is comprised of two subunits of 15 kDa linked by disulfide bonds. No sequence similarities with Viridiplantae proteins were observed. The PeRoL hemagglutinating activity (HA) was not affected by heating and was detected in a pH ranging from 4.0 to 8.0. Trehalose was identified as an endogenous inhibitor of PeRoL present in the roots. Bacteriostatic activity was detected against Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus (minimal inhibitory concentration of 8.1, 32.5 and 4.06 μg/mL, respectively). PeRoL induced the death of Candida albicans, Candida parapsilosis, Candida krusei, and Candida tropicalis cells, with a minimal fungicidal concentration of 16 μg/mL. The lectin (100 μg/mL) was not cytotoxic to human peripheral blood mononuclear cells (PBMCs) and did not show hemolytic activity. In conclusion, the roots of P. elatior contain a trehalose-binding, thermostable, and antimicrobial lectin.
Collapse
Affiliation(s)
| | - Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Amanda Mota Vieira
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Thâmarah de Albuquerque Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Maira Galdino da Rocha Pitta
- Departamento de Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|