1
|
Graham JH, Bassanezi RB, Dawson WO, Dantzler R. Management of Huanglongbing of Citrus: Lessons from São Paulo and Florida. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:243-262. [PMID: 38691871 DOI: 10.1146/annurev-phyto-121423-041921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
São Paulo, Brazil, and Florida, USA, were the two major orange production areas in the world until Huanglongbing (HLB) was discovered in São Paulo in 2004 and Florida in 2005. In the absence of resistant citrus varieties, HLB is the most destructive citrus disease known because of the lack of effective tools to reduce spread of the vector, Diaphorina citri (Asian citrus psyllid), and transmission of the associated pathogen, Candidatus Liberibacter asiaticus. In both countries, a three-pronged management approach was recommended and begun: planting only disease-free nursery trees, effective psyllid control, and removal of all symptomatic trees. In Brazil, these management procedures were continued and improved and resulted in relatively little overall loss of production. In contrast, in Florida the citrus industry has been devastated with annual production reduced by approximately 80%. This review compares and contrasts various cultural and pest management strategies that have been used to reduce infection by the pathogen and increase tolerance of HLB in the main orange-growing regions in the world.
Collapse
Affiliation(s)
- James H Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA;
| | - Renato B Bassanezi
- Fundecitrus, Fundo de Defesa da Citricultura, Araraquara, São Paulo, Brazil
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA;
| | - Rick Dantzler
- Citrus Research and Development Foundation, Lake Alfred, Florida, USA
| |
Collapse
|
2
|
Miranda MP, Fitches EC, Sukiran NA, Eduardo WI, Garcia RB, Jaciani FJ, Readshaw JJ, Bell J, Peña L. Spider venom neurotoxin based bioinsecticides: A novel bioactive for the control of the Asian citrus psyllid Diaphorina citri (Hemiptera). Toxicon 2024; 239:107616. [PMID: 38218384 DOI: 10.1016/j.toxicon.2024.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50) derived from dose-response artificial diet assays of 27, 20 and 52 μM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Marcelo P Miranda
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Elaine C Fitches
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom.
| | - Nur Afiqah Sukiran
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Wellington I Eduardo
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Rafael B Garcia
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Fabrício J Jaciani
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Jennifer J Readshaw
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Jack Bell
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Leandro Peña
- Instituto de Biologıa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Universidad Politécnica de Valencia, Spain
| |
Collapse
|
3
|
Lago C, Cornara D, Minutillo SA, Moreno A, Fereres A. Feeding behaviour and mortality of Philaenus spumarius exposed to insecticides and their impact on Xylella fastidiosa transmission. PEST MANAGEMENT SCIENCE 2022; 78:4841-4849. [PMID: 35908181 PMCID: PMC9804339 DOI: 10.1002/ps.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insecticides are essential, though controversial tools in modern pest management. Insecticides can slow the spread of key vector-borne plant pathogens, but often lead to inconsistent results given that insecticide use is generally focused on acute toxicity under no-choice conditions. Here, we analysed the lethal (survival) and sublethal (feeding behaviour) effects of six commercial products (acetamiprid, deltamethrin, spinosad, sulfoxaflor, pyrethrin and kaolin) on Philaenus spumarius, vector of the bacterium Xylella fastidiosa. Furthermore, we assessed the impact of insecticides displaying different degrees of acute toxicity against spittlebugs (highest to lowest: acetamiprid, pyrethrin and kaolin) on the transmission of X. fastidiosa by P. spumarius under both free-choice and no-choice conditions. RESULTS Deltamethrin, acetamiprid and to a limited extent pyrethrin significantly altered the feeding behaviour of P. spumarius. Deltamethrin and acetamiprid were highly toxic against P. spumarius, but the mortality induced by exposure to pyrethrin was limited overall. By contrast, spinosad, sulfoxaflor and kaolin did not significantly impact P. spumarius feeding behaviour or survival. Under no-choice conditions, both pyrethrin and acetamiprid reduced the X. fastidiosa inoculation rate compared with kaolin and the control. On the other hand, pyrethrin reduced transmission, but acetamiprid failed to significantly affect bacterial inoculation under free-choice conditions. CONCLUSION Pyrethrin was the only compound able to reduce X. fastidiosa transmission under both free-choice and no-choice conditions. Xylella fastidiosa management strategy based exclusively on the evaluation of insecticide acute toxicity under no-choice conditions would most likely fail to prevent, or slow, bacterial spread. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Clara Lago
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Departamento de Producción AgrariaEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Daniele Cornara
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Department of Soil, Plant and Food SciencesEntomological and Zoological Section, University of Bari Aldo MoroBariItaly
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Serena Anna Minutillo
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| |
Collapse
|
4
|
Oliveira DF, Benhadi‐Marín J, Neto J, Sanz L, Garzo E, Aguiar A, Fereres A, Pereira JA. Kaolin particle films disrupt landing, settling behavior and feeding of Trioza erytrae on lemon plants. PEST MANAGEMENT SCIENCE 2022; 78:4753-4763. [PMID: 35894950 PMCID: PMC9805282 DOI: 10.1002/ps.7095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The citrus greening disease or Huanglongbing (HLB) is the most devastating disease of citrus crops. Trioza erytreae is a vector of HLB. Since its introduction in Europe, the insect reached the northern region of Spain and the southern region of Portugal, threatening relevant citrus production areas. Limiting the spread of HLB vectors is mandatory to prevent this disease. In this work, we assessed the effect of kaolin, a white mineral clay, on the landing, settling behavior and feeding behavior of Trioza erytreae on lemon plants. RESULTS After kaolin application, the number of plants on which the insect was found was significantly lower than on untreated plants in the laboratory and in the field. Moreover, there were significantly fewer T. erytreae and a shorter duration of phloem-related events on kaolin-treated than untreated plants. CONCLUSION The use of kaolin could be a suitable and efficient tool for inclusion into integrated pest management programs or organic production to reduce populations of T. erytreae and subsequently limit the spread of HLB in citrus crops. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Diogo Félix Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de BragançaCampus Sta ApolóniaBragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de BragançaCampus Sta ApolóniaBragançaPortugal
| | - Jacinto Benhadi‐Marín
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de BragançaCampus Sta ApolóniaBragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de BragançaCampus Sta ApolóniaBragançaPortugal
| | - Joana Neto
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOTFaculty of Sciences of the University of PortoVairãoPortugal
| | - Lorena Sanz
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA‐CSICMadridSpain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA‐CSICMadridSpain
| | - Ana Aguiar
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOTFaculty of Sciences of the University of PortoVairãoPortugal
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA‐CSICMadridSpain
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de BragançaCampus Sta ApolóniaBragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de BragançaCampus Sta ApolóniaBragançaPortugal
| |
Collapse
|
5
|
Miranda MP, Eduardo WI, Tomaseto AF, Volpe HXL, Bachmann L. Frequency of processed kaolin application to prevent Diaphorina citri infestation and dispersal in flushing citrus orchards. PEST MANAGEMENT SCIENCE 2021; 77:5396-5406. [PMID: 34313389 DOI: 10.1002/ps.6579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Processed kaolin is a promising tactic that can be utilized for managing Diaphorina citri Kuwayama infestation. However, the frequency of kaolin application to protect citrus trees during flushing remains undetermined. The objective of this study was to ascertain the frequency of kaolin application (2%) required to reduce D. citri infestation and dispersal in flushing citrus orchards and to measure the spectral reflectance of kaolin-sprayed leaves. RESULTS Trees sprayed with kaolin at 7- and 14-day intervals showed an 80% psyllid reduction compared to untreated trees. In addition, there was lower psyllid dispersal in the kaolin-sprayed plots. Spectral measurements (wavelengths between 320 and 700 nm) showed an increased reflectance of 35.4% (adaxial leaf side) and 21.9% (abaxial leaf side) in mature leaves, and 9% (adaxial leaf side) and 2.2% (abaxial leaf side) in kaolin-sprayed immature leaves compared to untreated trees. CONCLUSION Application of kaolin (2%) at 7- and 14-day intervals can be an important and sustainable tool for reducing D. citri infestation and dispersal in flushing citrus orchards. The reduced D. citri population in plots with both kaolin application intervals may be related to the visual effect (whitish aspect) and increased light reflectance in citrus trees, which are probably the main mechanisms by which kaolin interferes on D. citri host finding behavior. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcelo Pedreira Miranda
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
| | - Wellington Ivo Eduardo
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
| | - Arthur Fernando Tomaseto
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
| | | | - Luciano Bachmann
- School of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Alquézar B, Volpe HXL, Magnani RF, de Miranda MP, Santos MA, Marques VV, de Almeida MR, Wulff NA, Ting HM, de Vries M, Schuurink R, Bouwmeester H, Peña L. Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2021; 12:641457. [PMID: 33763099 PMCID: PMC7982956 DOI: 10.3389/fpls.2021.641457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Huanglongbing (HLB) is a destructive disease, associated with psyllid-transmitted phloem-restricted pathogenic bacteria, which is seriously endangering citriculture worldwide. It affects all citrus species and cultivars regardless of the rootstock used, and despite intensive research in the last decades, there is no effective cure to control either the bacterial species (Candidatus Liberibacter spp.) or their insect vectors (Diaphorina citri and Trioza erytreae). Currently, the best attempts to manage HLB are based on three approaches: (i) reducing the psyllid population by intensive insecticide treatments; (ii) reducing inoculum sources by removing infected trees, and (iii) using nursery-certified healthy plants for replanting. The economic losses caused by HLB (decreased fruit quality, reduced yield, and tree destruction) and the huge environmental costs of disease management seriously threaten the sustainability of the citrus industry in affected regions. Here, we have generated genetically modified sweet orange lines to constitutively emit (E)-β-caryophyllene, a sesquiterpene repellent to D. citri, the main HLB psyllid vector. We demonstrate that this alteration in volatile emission affects behavioral responses of the psyllid in olfactometric and no-choice assays, making them repellent/less attractant to the HLB vector, opening a new alternative for possible HLB control in the field.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Haroldo Xavier Linhares Volpe
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Rodrigo Facchini Magnani
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Chemistry Department, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Pedreira de Miranda
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Mateus Almeida Santos
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Viviani Vieira Marques
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Márcia Rodrigues de Almeida
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Nelson Arno Wulff
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
7
|
Martini X, Malfa K, Stelinski LL, Iriarte FB, Paret ML. Distribution, Phenology, and Overwintering Survival of Asian Citrus Psyllid (Hemiptera: Liviidae), in Urban and Grove Habitats in North Florida. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1080-1087. [PMID: 31982907 DOI: 10.1093/jee/toaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Cold hardy citrus is an emerging industry in north Florida. However, it is under the threat of Candidatus Liberibacter asiaticus (CLas), the agent of the citrus disease huanglongbing. Distribution and phenology of the Asian citrus psyllid, Diaphorina citri (Kuwayama), the vector of CLas, was investigated over a 2-year sampling period in north Florida. Diaphorina citri was only found in backyard and ornamental citrus along the Gulf of Mexico, and was not observed in cultivated citrus groves during the 2 years (2017-2018) of the survey. Diaphorina citri population peaks occurred approximately 2 mo later than in central Florida with major population peaks occurring in July. The number of D. citri adults was significantly higher on CLas infected than uninfected citrus trees, whereas more nymphs were found on uninfected trees. Most D. citri were negative for CLas except in Franklin county where both infected trees and psyllids were found. We were able to find adult D. citri during all winter months, despite temperatures as low as -5.5°C. During two consecutive winters, we conducted experiments to determine D. citri cold hardiness by caging D. citri under ambient conditions in mid-November and assessing survivors in the following spring. In 2018, approximately 21%, of D. citri adults survived overwintering whereas 16% survived in 2019 despite lower temperature in 2018 than in 2019. As we are at the earliest stage of HLB infestation, management of D. citri and CLas in north Florida should focus on removal of CLas-infected trees to reduce the reservoir of pathogen.
Collapse
Affiliation(s)
- Xavier Martini
- Entomology and Nematology Department, North Florida Research and Education Center, University of Florida, Quincy, FL
| | - Kathi Malfa
- Entomology and Nematology Department, North Florida Research and Education Center, University of Florida, Quincy, FL
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, Lake Alfred, FL
| | - Fanny B Iriarte
- Plant Pathology Department, North Florida Research and Education Center, Quincy, FL
| | - Mathews L Paret
- Plant Pathology Department, North Florida Research and Education Center, Quincy, FL
| |
Collapse
|
8
|
The Probing Behavior Component of Disease Transmission in Insect-Transmitted Bacterial Plant Pathogens. INSECTS 2019; 10:insects10070212. [PMID: 31331012 PMCID: PMC6681269 DOI: 10.3390/insects10070212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
Insects can be effective vectors of plant diseases and this may result in billions of dollars in lost agricultural productivity. New, emerging or introduced diseases will continue to cause extensive damage in afflicted areas. Understanding how the vector acquires the pathogen and inoculates new hosts is critical in developing effective management strategies. Management may be an insecticide applied to kill the vector or a host plant resistance mechanism to make the host plant less suitable for the vector. In either case, the tactic must act before the insect performs the key behavior(s) resulting in either acquisition or transmission. This requires knowledge of the timing of behaviors the insect uses to probe the plant and commence ingestion. These behaviors are visualized using electropenetrography (EPG), wherein the plant and insect become part of an electrical circuit. With the tools to define specific steps in the probing process, we can understand the timing of acquisition and inoculation. With that understanding comes the potential for more relevant testing of management strategies, through insecticides or host plant resistance. The primary example will be Candidatus Liberibacter asiaticus transmitted by Diaphorina citri Kuwayama in the citrus agroecosystem, with additional examples used as appropriate.
Collapse
|
9
|
Zhong ZF, Zhou XJ, Lin JB, Liu XJ, Shao J, Zhong BL, Peng T. Effects of leaf colorness, pigment contents and allelochemicals on the orientation of the Asian citrus psyllid among four Rutaceae host plants. BMC PLANT BIOLOGY 2019; 19:254. [PMID: 31195973 PMCID: PMC6567656 DOI: 10.1186/s12870-019-1818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Asian citrus psyllid (ACP) is the primary vector responsible for the transmission of the phloem-limited bacteria Candidatus Liberibacter spp., associated with huanglongbing (HLB), which causes great loss to the citrus industry. Although the roles of leaf color and volatile compounds in the orientation of ACP have been proven, the quantification of color and allelochemicals in the host plant are kept unclear, especially in wild citrus germplasms. RESULTS Chongyi wild mandarin significantly attracted more ACP than wild Hong Kong kumquat, 'Gannan zao' navel orange and orange jasmine did in the four-choice and olfactometer assays. The color parameters of the tender leaves from Chongyi wild mandarin and 'Gannan zao' were similar. The yellow color in both of them was less saturated than that of the other two plants species, but Chongyi wild mandarin had significant lower carotenoid content (P < 0.05). Notably metabolic profiling differences were observed among the healthy tender shoots from the four tested plants via UPLC-QQQ-MS and GC-MS analyses. Comparing with the other three plant species, 66 and 50 metabolites with significantly different contents in Chongyi wild mandarin were selected as UPLC-identified and GC-identified metabolites of interest (P < 0.05), respectively. Flavonoids accounted for a large group of secondary metabolites of interest, which may function as stimulants or repellents of ACP. Higher content of salicylic acid o-hexoside and lower content of (+)-jasmonic acid in Chongyi wild mandarin may lead to higher amount of methyl salicylate (an ACP attractant) and lower amount of trans-ocimene (an attractant to herbivores' natural enemies) as well as the suppression of JA-mediated wounding response. This kind of synergistic or antagonistic effect among the metabolites differentially accumulated in Chongyi wild mandarin made it a more attractive host plant to ACP. CONCLUSIONS Less saturated yellow color, high amount of attractants, low amount of repellents and insensitivity of JA-mediated wounding response are the four possible reasons why Chongyi wild mandarin attracted more ACP. This work may shed light on the olfactory and visual response of ACP to wild citrus germplasm hosts, and suggest the feasibility of developing ACP attractants or repellents patterned on potential metabolites.
Collapse
Affiliation(s)
- Zao-Fa Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Juan Zhou
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Jin-Bei Lin
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xin-Jun Liu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Jia Shao
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ba-Lian Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ting Peng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
10
|
Abstract
Novel, suitable and sustainable alternative control tactics that have the potential to reduce migration of Diaphorina citri into commercial citrus orchards are essential to improve management of huanglongbing (HLB). In this study, the effect of orange jasmine (Murraya paniculata) as a border trap crop on psyllid settlement and dispersal was assessed in citrus orchards. Furthermore, volatile emission profiles and relative attractiveness of both orange jasmine and sweet orange (Citrus × aurantium L., syn. Citrus sinensis (L.) Osbeck) nursery flushes to D. citri were investigated. In newly established citrus orchards, the trap crop reduced the capture of psyllids in yellow sticky traps and the number of psyllids that settled on citrus trees compared to fallow mowed grass fields by 40% and 83%, respectively. Psyllids were attracted and killed by thiamethoxam-treated orange jasmine suggesting that the trap crop could act as a 'sink' for D. citri. Additionally, the presence of the trap crop reduced HLB incidence by 43%. Olfactometer experiments showed that orange jasmine plays an attractive role on psyllid behavior and that this attractiveness may be associated with differences in the volatile profiles emitted by orange jasmine in comparison with sweet orange. Results indicated that insecticide-treated M. paniculata may act as a trap crop to attract and kill D. citri before they settled on the edges of citrus orchards, which significantly contributes to the reduction of HLB primary spread.
Collapse
|