1
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Man Y, Sun T, Wu C, Liu X, He M. Evaluating the Impact of Individual and Combined Toxicity of Imidacloprid, Cycloxaprid, and Tebuconazole on Daphnia magna. TOXICS 2023; 11:toxics11050428. [PMID: 37235243 DOI: 10.3390/toxics11050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
The risks posed by chemicals in the environment are typically assessed on a substance-by-substance basis, often neglecting the effects of mixtures. This may lead to an underestimation of the actual risk. In our study, we investigated the effects of three commonly used pesticides-imidacloprid (IMI), cycloxaprid (CYC), and tebuconazole (TBZ)-both individually and in combination, using various biomarkers to assess their impact on daphnia. Our findings indicated that the order of toxicity, from highest to lowest, was TBZ, IMI, and CYC, as determined by acute toxicity as well as reproduction. The effects of the ITmix (IMI and TBZ) and CTmix (CYC and TBZ) combinations on immobilization and reproduction were evaluated by MIXTOX, revealing a higher risk of immobilization at low concentrations for ITmix. The effect on reproduction differed depending on the ration of pesticides in the mixture, with synergism observed, which may be caused mainly by IMI. However, CTmix showed antagonism for acute toxicity, with the effect on reproduction depending upon the composition of the mixture. The response surface also exhibited a switch between antagonism and synergism. Additionally, the pesticides extended the body length and inhibited the development period. The activities of superoxide dismutase (SOD) and catalase (CAT) content was also significantly induced at different dosage points in both the single and combination groups, indicating changes in the metabolic capabilities of detoxifying enzymes and target site sensitivity. These findings highlight the need for more attention to be focused on the effects of pesticide mixtures.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian Sun
- Guangxi SPR Technology Co., Ltd., Nanning 530000, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyuan He
- Guangxi SPR Technology Co., Ltd., Nanning 530000, China
| |
Collapse
|
3
|
Zhang Y, Xu X, Wang J, Shao X, Liu Z, Li Z. Molecular Mechanism of Action of Cycloxaprid, An Oxabridged cis-Nitromethylene Neonicotinoid. Int J Mol Sci 2023; 24:ijms24087511. [PMID: 37108674 PMCID: PMC10139173 DOI: 10.3390/ijms24087511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cycloxaprid, an oxabridged cis-nitromethylene neonicotinoid, showed high insecticidal activity in Hemipteran insect pests. In this study, the action of cycloxaprid was characterized by recombinant receptor Nlα1/rβ2 and cockroach neurons. On Nlα1/β2 in Xenopus oocytes, cycloxaprid acted as a full agonist. The imidacloprid resistance-associated mutation Y151S reduced the Imax of cycloxaprid by 37.0% and increased EC50 values by 1.9-fold, while the Imax of imidacloprid was reduced by 72.0%, and EC50 values increased by 2.3-fold. On cockroach neurons, the maximum currents elicited by cycloxaprid were only 55% of that of acetylcholine, a full agonist, but with close EC50 values of that of trans-neonicotinoids. In addition, cycloxaprid inhibited acetylcholine-evoked currents on insect neurons in a concentration-dependent manner when co-applied with acetylcholine. Cycloxaprid at low concentrations significantly inhibited the activation of nAChRs by acetylcholine, and its inhibition potency at 1 µM was higher than its activation potency on insect neurons. Two action potencies, activation, and inhibition, by cycloxaprid on insect neurons provided an explanation for its high toxicity to insect pests. In summary, as a cis-nitromethylene neonicotinoid, cycloxaprid showed high potency on both recombinant nAChR Nlα1/β2 and cockroach neurons, which guaranteed its high control effects on a variety of insect pests.
Collapse
Affiliation(s)
- Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Yuan GR, Chen ML, Peng ML, Lei W, Meng LW, Dou W, Wang JJ. Knockdown of a Nicotinic Acetylcholine Receptor Subunit Gene Bdorβ1 Decreases Susceptibility to Oxa-Bridged trans- instead of cis-Nitromethylene Neonicotinoid Insecticides in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13554-13562. [PMID: 36224100 DOI: 10.1021/acs.jafc.2c04709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorβ1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorβ1 shows high identities to other insect nAChRs β1 subunits. Double injection of dsBdorβ1 reduced the expression of Bdorβ1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorβ1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Ling Chen
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Lan Peng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Lei
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Li-Wei Meng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
5
|
Dong W, Yang H, Wang C, Li H, Shang J, Chen Z, Zhang H, Liang P, Gao X, Shi X. Cross-Resistance and Fitness Costs of the cis-Nitromethylene Neonicotinoid Cycloxaprid Resistance in Melon Aphid, Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1668-1675. [PMID: 35899798 DOI: 10.1093/jee/toac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The melon aphid, Aphis gossypii Glover, is an important pest on various vegetables around the world and has developed resistance to neonicotinoids in fields. Cycloxaprid is a novel cis-nitromethylene configuration neonicotinoid insecticide that is different from trans-configuration neonicotinoids like imidacloprid and thiamethoxam. Herein, the cross-resistance to the other seven insecticides and fitness costs were investigated in the cycloxaprid-resistant A. gossypii strain (Cpd-R), which has developed 69.5-fold resistance to cycloxaprid. The results showed that the Cpd-R strain had very low levels of cross-resistance to imidacloprid (4.3-fold), acetamiprid (2.9-fold), thiamethoxam (3.7-fold), nitenpyram (6.1-fold), flupyradifurone (2.2-fold), and sulfoxaflor (4.5-fold), while it exhibited a cross-resistance to dinotefuran (10.6-fold). The fitness of the Cpd-R strain by life table analysis was only 0.799 compared to the susceptible strain (Cpd-S). This Cpd-R strain exhibited significantly reduction in fecundity, oviposition days, and developmental time of nymph stage compared to the Cpd-S strain. Moreover, the expression levels of some genes related to the development and reproduction, including EcR, USP, JHAMT, and JHEH were significantly up-regulated, while Vg was down-regulated in the Cpd-R strain. This study indicates that the Cpd-R strain possessed a certain fitness cost. The above research results are useful for rational application of cycloxaprid and implementing the appropriate resistance management strategy for A. gossypii.
Collapse
Affiliation(s)
- Wenyang Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hengli Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongbao Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiao Shang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhao Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
6
|
Zhang L, Zhang J, Wang C, He Y, Wen X, Xu Z, Wang C. Toxicological, Behavioral, and Horizontal Transfer Effects of Cycloxaprid Against Formosan Subterranean Termites (Blattodea: Rhinotermitidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1240-1250. [PMID: 35583241 DOI: 10.1093/jee/toac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Cycloxaprid, 9-((6-chloropyrid-3-yl)methyl)-4-nitro-8-oxa-10,11-dihydroimidazo-[2,3-a]-bicyclo-[3,2,1]-oct-3-ene, is a cis-configuration neonicotinoid insecticide. In the present study, the lethal and sublethal effect of cycloxaprid against Formosan subterranean termites, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae), was evaluated and compared with fipronil. Toxicity bioassays showed that cycloxaprid had slightly lower toxicity than fipronil. The minimum cycloxaprid concentration in sand and soil that causes 100% termite mortality was 100 ppm. Similar to fipronil, cycloxaprid significantly reduced wood consumption and tunneling activities of termites. In the tunneling-choice tests, termite tunneling activity measured in both length and area was significantly lower in sand treated with cycloxaprid (10 or 100 ppm) than that in untreated sand. In the aggregation-choice tests, cycloxaprid exhibited inhibition to termite aggregation starting from 100 ppm. In addition, cycloxaprid exhibited significant horizontal transfer effect at 10 ppm. In conclusion, our study showed that cycloxaprid is slightly less toxic than fipronil and more repellent to C. formosanus than fipronil. Future studies are needed to evaluate the effectiveness of cycloxaprid against subterranean termites in the field.
Collapse
Affiliation(s)
- Lang Zhang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianlong Zhang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Changlu Wang
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yinghao He
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Cheng X, Zhang H, Wang Y, Zhang S, Ye Q. Fate of the neonicotinoid insecticide cycloxaprid in different soils under oxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153448. [PMID: 35093364 DOI: 10.1016/j.scitotenv.2022.153448] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids are the most widely used pesticides worldwide due to their high toxicity to invertebrates. However, these compounds also increase the probability of environmental contamination. Cycloxaprid (CYC) is a promising neonicotinoid due to its insecticidal effectiveness and low cross resistance, but little is known about its fate in soils. Using radioisotope tracing techniques, the fate of 14C-labeled CYC enantiomers and racemic mixtures in aerobic soil was investigated in this research. After 100 d of incubation, the extractable residue (ER) of CYC decreased from 89.6% to 36.4% in red clay soil, from 46.1% to 10.1% in yellow loam soil, and from 93.2% to 12.2% in coastal saline soil. The radioactivity was substantially lower in methanol than in the other two solvents, but the distribution of CYC ER in various solvents across the three soils dramatically differed. The fraction of radioactive CYC that diffused into bound residue (BR) in the three soils increased over time to 56.8-83.0%. The variability in BR was influenced by soil properties such as organic matter concentration, pH, and residual microbial activity. Among the soils, yellow loam soil had the greatest tendency (53.0-83.0%) to form BR, while red clay soil showed the lowest capacity (7.5-61.2%). Cumulative mineralization (MI) to 14CO2 accounted for 0.12-0.23%, 6.69-7.31% and 14.82-20.06% in acidic soil, neutral soil and alkaline soil, respectively, which suggests that the environmental fate of chiral pesticides may be influenced by soil pH. No stereoselective behavior was detected in this study. These findings provide a framework to assess the environmental impact and ecological safety of CYC application.
Collapse
Affiliation(s)
- Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Hanxue Zhang
- Shanghai Qizhen Environmental Technology Co., Ltd, 659 Maoyuan Rd, Shanghai 201403, PR China
| | - Yichen Wang
- Hangzhou Botanical Garden, Hangzhou 310013, PR China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Bao H, Gao H, Zhang J, Lu H, Yu N, Shao X, Zhang Y, Jin W, Li S, Xu X, Tian J, Xu Z, Li Z, Liu Z. Neonicotinoids stimulate H 2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117237. [PMID: 33957515 DOI: 10.1016/j.envpol.2021.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Methane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in the cockroach Periplaneta americana and termite Coptotermes chaohuensis, insects with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. Cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane emission. Antibiotics mostly eliminated the effects. In P. americana guts, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and two genera from four could generate hydrogen. Hydrogen is a central intermediate in methanogenesis. All increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme for the final step of methanogenesis suggested the enhanced methane production ability in present methanogens. In the termite, hydrogen levels in gut and methane emission also significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulated gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with atmospheric methane.
Collapse
Affiliation(s)
- Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling 50, Nanjing, 210014, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling 50, Nanjing, 210014, China
| | - Haiyan Lu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Wei Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shuqing Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jiahua Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
9
|
Singh A, Leppanen C. Known Target and Nontarget Effects of the Novel Neonicotinoid Cycloxaprid to Arthropods: A Systematic Review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:831-840. [PMID: 32592520 DOI: 10.1002/ieam.4305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are the most widely used insecticide class worldwide, and unfortunately, the widely used neonicotinoid imidacloprid is problematic for pollinators and other nontarget organisms. These nontarget impacts and the development of resistance prompt the ongoing development and testing of new neonicotinoids. The novel neonicotinoid cycloxaprid was described in 2011 and registered in China in 2015. Studies investigating its use and effect on target and nontarget species are recent and ongoing, and empirical evidence has not yet been collectively considered. Therefore, a systematic review was performed to identify and summarize data associated with target and nontarget, lethal and sublethal impacts of cycloxaprid for its use as a new insecticide. We performed keyword literature searches in Web of Science, PubMed, Academic Search Complete, and Google Scholar and explored citations used in identified articles. The search strategy yielded 66 citations; 25 citations fulfilled eligibility criteria and were included in the review. Under experimental conditions, cycloxaprid reduced populations of plant-feeding insect pests, suppressed populations of sucking and biting insect pests, and affected reproduction, development time, longevity, growth, gene regulation and expression, and phloem-feeding behavior of various life stages of certain insects. Studies focus on pest control efficacy and comparison with imidacloprid. Five nontarget organisms have been evaluated: Apis mellifera, Chrysoperla sinica, Harmonia axyridis, Daphnia magna, and Eisenia fetida. Variation in study design, to date, precludes a metaanalysis. However, these results provide valuable insight into possible effects to target and nontarget arthropods. Because cycloxaprid is a new insecticide, additional research is needed to clarify the mechanism of action of cycloxaprid and its metabolites, and to determine if it harms natural enemies or other nontarget organisms, if resistance develops, and if it exhibits cross-resistance with other insecticides. Although research on target arthropods will inform some effects on nontarget organisms, studies focusing explicitly on impacts to nontarget organisms are needed. Integr Environ Assess Manag 2020;16:831-840. © 2020 SETAC.
Collapse
Affiliation(s)
- Anisha Singh
- Department of Public Health, University of Tennessee, Knoxville, Tennessee, USA
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Qi H, Liu T, Lu Q, Yang Q. Molecular Insights into the Insensitivity of Lepidopteran Pests to Cycloxaprid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:982-988. [PMID: 31909997 DOI: 10.1021/acs.jafc.9b06959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cycloxaprid (CYC) is effective in the control of hemipteran pests, but its bioactivity against lepidopteran pests is still unclear. Here, the bioactivity of CYC against lepidopteran pests was found to be much worse than that against hemipteran insects. To reveal the mechanism, the transcriptomes of CYC-treated and untreated Ostrinia furnacalis larvae were compared. Among the top 20 differentially expressed genes, 11 encode proteins involved in cuticle formation, while only one encodes a detoxifying enzyme. Thus, the cuticle appears to be important for the insensitivity of O. furnacalis to CYC. A pretreatment of O. furnacalis larvae with methoprene enhanced the bioactivity of CYC by 1.12-fold. Moreover, mixtures of CYC with graphene oxide increased the bioactivity of CYC by 1.88-fold. Because lepidopteran and hemipteran insects often harm crops at the same time, the work can help make full use of CYC and reduce the environmental impacts of using multiple pesticides.
Collapse
Affiliation(s)
- Huitang Qi
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qiong Lu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
11
|
Mao K, Zhang X, Ali E, Liao X, Jin R, Ren Z, Wan H, Li J. Characterization of nitenpyram resistance in Nilaparvata lugens (Stål). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:26-32. [PMID: 31153474 DOI: 10.1016/j.pestbp.2019.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Nitenpyram is very effective in controlling Nilaparvata lugens (brown planthopper, BPH), and its resistance has been reported in field populations; however, the resistance mechanism remains unclear. In the present study, cross-resistance and resistance mechanisms in nitenpyram-resistant BPH were investigated. A resistant strain (NR) with a high resistance level (164.18-fold) to nitenpyram was evolved through successive selection for 42 generations from a laboratory susceptible strain (NS). The bioassay results showed that the NR exhibited cross-resistance to imidacloprid (37.46-fold), thiamethoxam (71.66-fold), clothianidin (149.17-fold), dinotefuran (98.13-fold), sulfoxaflor (47.24-fold), cycloxaprid (9.33-fold), etofenprox (10.51-fold) and isoprocarb (9.97-fold) but not to triflumezopyrim, chlorpyrifos and buprofezin. The NR showed a 3.21-fold increase in cytochrome P450 monooxygenase (P450) activity compared to that in the NS, while resistance was also synergized (4.03-fold) with the inhibitor piperonyl butoxide (PBO), suggesting a role of P450. Furthermore, the mRNA expression levels of cytochrome P450 (CYP) genes by quantitative real-time PCR results indicated that twelve P450 genes were significantly overexpressed in the NR strain, especially CYP6ER1 (203.22-fold). RNA interference (RNAi) suppression of CYP6ER1 through injection of dsCYP6ER1 led to significant susceptibility in the NR strain. The current study expands our understanding of the nitenpyram resistance mechanism in N. lugens, provides an important reference for integrated pest management (IPM), and enriches the theoretical system of insect toxicology.
Collapse
Affiliation(s)
- Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaolei Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xun Liao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|